Mleczko Michal J, Zhang Chaofan, Lee Hye Ryoung, Kuo Hsueh-Hui, Magyari-Köpe Blanka, Moore Robert G, Shen Zhi-Xun, Fisher Ian R, Nishi Yoshio, Pop Eric
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Physics, Stanford University, Stanford, CA 94305, USA.
Sci Adv. 2017 Aug 11;3(8):e1700481. doi: 10.1126/sciadv.1700481. eCollection 2017 Aug.
The success of silicon as a dominant semiconductor technology has been enabled by its moderate band gap (1.1 eV), permitting low-voltage operation at reduced leakage current, and the existence of SiO as a high-quality "native" insulator. In contrast, other mainstream semiconductors lack stable oxides and must rely on deposited insulators, presenting numerous compatibility challenges. We demonstrate that layered two-dimensional (2D) semiconductors HfSe and ZrSe have band gaps of 0.9 to 1.2 eV (bulk to monolayer) and technologically desirable "high-κ" native dielectrics HfO and ZrO, respectively. We use spectroscopic and computational studies to elucidate their electronic band structure and then fabricate air-stable transistors down to three-layer thickness with careful processing and dielectric encapsulation. Electronic measurements reveal promising performance (on/off ratio > 10; on current, ~30 μA/μm), with native oxides reducing the effects of interfacial traps. These are the first 2D materials to demonstrate technologically relevant properties of silicon, in addition to unique compatibility with high-κ dielectrics, and scaling benefits from their atomically thin nature.
硅作为主导半导体技术的成功得益于其适中的带隙(1.1电子伏特),这使得它能够在降低漏电流的情况下进行低电压操作,并且存在二氧化硅这种高质量的“天然”绝缘体。相比之下,其他主流半导体缺乏稳定的氧化物,必须依赖沉积绝缘体,这带来了诸多兼容性挑战。我们证明,层状二维(2D)半导体HfSe和ZrSe的带隙分别为0.9至1.2电子伏特(体相到单层),并且分别具有技术上所需的“高κ”天然电介质HfO和ZrO。我们使用光谱和计算研究来阐明它们的电子能带结构,然后通过精细加工和电介质封装制造出厚度低至三层的空气稳定型晶体管。电学测量显示出有前景的性能(开/关比>10;导通电流,约30μA/μm),天然氧化物减少了界面陷阱的影响。这些是首批展示出硅的技术相关特性的二维材料,此外还具有与高κ电介质独特的兼容性,并且因其原子级薄的特性而具有缩放优势。