Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
Biosensors (Basel). 2016 Jul 18;6(3):35. doi: 10.3390/bios6030035.
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
为了在分离技术和生物分析中替代生物配体,已经产生了仿生结合物和催化剂。这两种主要方法都使用“试管内进化”核苷酸来制备适体,或者使用全化学合成来制备分子印迹聚合物(MIP)。适体的可重复生产是一个明显的优势,而 MIP 的制备通常会导致具有不同结合位点的聚合物群体。在 MIP 的整个体相中实现结合位点会导致更高的结合容量,但代价是可及性和交换速率降低。此外,由于信号生成标签的整合已经得到很好的建立,因此适体更容易读取结合的分析物。另一方面,核苷酸的整体负电荷使得适体容易与样品中带正电荷的成分发生非特异性吸附,并且非修饰适体的“生物”降解以及离子强度依赖性构象变化在某些应用中可能具有挑战性。