Martfeld Ashley N, Greathouse Denise V, Koeppe Roger E
From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701.
From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
J Biol Chem. 2016 Sep 2;291(36):19146-56. doi: 10.1074/jbc.M116.738583. Epub 2016 Jul 20.
We address the critically important ionization properties of histidine side chains of membrane proteins, when exposed directly to lipid acyl chains within lipid bilayer membranes. The problem is important for addressing general principles that may underlie membrane protein function. To this end, we have employed a favorable host peptide framework provided by GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide). We inserted His residues into position 12 or 14 of GWALP23 (replacing either Leu(12) or Leu(14)) and incorporated specific [(2)H]Ala labels within the helical core sequence. Solid-state (2)H NMR spectra report the folding and orientation of the core sequence, revealing marked differences in the histidine-containing transmembrane helix behavior between acidic and neutral pH conditions. At neutral pH, the GWALP23-H12 and GWALP23-H14 helices exhibit well defined tilted transmembrane orientations in dioleoylphosphatidylcholine (DOPC)and dilauroylphosphatidylcholine (DLPC) bilayer membranes. Under acidic conditions, when His(12) is protonated and charged, the GWALP23-H12 helix exhibits a major population that moves to the DOPC bilayer surface and a minor population that occupies multiple transmembrane states. The response to protonation of His(14) is an increase in helix tilt, but GWALP23-H14 remains in a transmembrane orientation. The results suggest pKa values of less than 3 for His(12) and about 3-5 for His(14) in DOPC membranes. In the thinner DLPC bilayers, with increased water access, the helices are less responsive to changes in pH. The combined results enable us to compare the ionization properties of lipid-exposed His, Lys, and Arg side chains in lipid bilayer membranes.
我们研究了膜蛋白中组氨酸侧链直接暴露于脂质双分子层膜内的脂质酰链时至关重要的电离特性。该问题对于阐明可能构成膜蛋白功能基础的一般原理很重要。为此,我们采用了由GWALP23(乙酰基-GGALW(5)LALALALALALALW(19)LAGA-酰胺)提供的有利宿主肽框架。我们将组氨酸残基插入GWALP23的第12位或第14位(取代亮氨酸(12)或亮氨酸(14)),并在螺旋核心序列中掺入特定的[(2)H]丙氨酸标记。固态(2)H NMR光谱报告了核心序列的折叠和取向,揭示了酸性和中性pH条件下含组氨酸跨膜螺旋行为的显著差异。在中性pH下,GWALP23-H12和GWALP23-H14螺旋在二油酰磷脂酰胆碱(DOPC)和二月桂酰磷脂酰胆碱(DLPC)双层膜中表现出明确的倾斜跨膜取向。在酸性条件下,当His(12)质子化并带电时,GWALP23-H12螺旋表现出主要群体移动到DOPC双层膜表面,次要群体占据多种跨膜状态。对His(14)质子化的响应是螺旋倾斜增加,但GWALP23-H14仍保持跨膜取向。结果表明,在DOPC膜中,His(12)的pKa值小于3,His(14)的pKa值约为3-5。在较薄的DLPC双层膜中,随着水的可及性增加,螺旋对pH变化的响应较小。综合结果使我们能够比较脂质双分子层膜中暴露于脂质的His、Lys和Arg侧链的电离特性。