Suppr超能文献

来自气生陆地生境的雪藻和绿藻的高光谱成像。

Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

作者信息

Holzinger Andreas, Allen Michael C, Deheyn Dimitri D

机构信息

Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.

Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0202, USA.

出版信息

J Photochem Photobiol B. 2016 Sep;162:412-420. doi: 10.1016/j.jphotobiol.2016.07.001. Epub 2016 Jul 5.

Abstract

Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

摘要

生活在气生陆地栖息地的雪藻和绿藻是研究对高光辐照适应性的理想对象。在此,我们使用对光谱特性的详细描述作为雪藻(雪衣藻、链雪藻属和绿雪藻属)和轮藻纲绿藻(双星藻属、藓生双星藻和细齿鞘毛藻)光适应/光保护的替代指标。高光谱显微绘图和成像技术使我们能够获取这些微藻在400 - 900nm波段的总吸收光谱。特别是在雪衣藻和链雪藻属中,由于天然存在的次生类胡萝卜素,在400 - 550nm之间观察到高吸光度;在绿雪藻属和轮藻纲绿藻中则没有这种高吸光度,后者与陆地植物是近亲。为了研究细胞失水是否对光谱特性有影响,将细胞在山梨醇中进行质壁分离或在环境空气中干燥。在雪藻中,这些处理几乎没有改变光谱特性,而在轮藻纲绿藻中,细胞质和质体的浓缩增加了400 - 500nm较低波段的吸光度。这些变化可能在生态上具有相关性且具有光保护作用,因为气生陆地藻类自然会偶尔面临水分限制,导致干燥,而这些情况通常与较高的辐照同时发生。

相似文献

1
Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.
J Photochem Photobiol B. 2016 Sep;162:412-420. doi: 10.1016/j.jphotobiol.2016.07.001. Epub 2016 Jul 5.
2
A new microscopic method to analyse desiccation-induced volume changes in aeroterrestrial green algae.
J Microsc. 2016 Aug;263(2):192-9. doi: 10.1111/jmi.12409. Epub 2016 Apr 14.
4
Snow and Glacial Algae: A Review.
J Phycol. 2020 Apr;56(2):264-282. doi: 10.1111/jpy.12952. Epub 2020 Feb 29.
5
Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction.
PLoS One. 2014 Oct 23;9(10):e110630. doi: 10.1371/journal.pone.0110630. eCollection 2014.
7
The ice nucleation activity of extremophilic algae.
Cryo Letters. 2013 Mar-Apr;34(2):137-48.
9
Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms.
Front Plant Sci. 2013 Aug 22;4:327. doi: 10.3389/fpls.2013.00327. eCollection 2013.
10
Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress.
Protoplasma. 2010 Jul;243(1-4):3-14. doi: 10.1007/s00709-009-0060-9. Epub 2009 Jul 8.

引用本文的文献

1
Diversity and Distribution of Carotenogenic Algae in Europe: A Review.
Mar Drugs. 2023 Feb 1;21(2):108. doi: 10.3390/md21020108.
2
Pigment signatures of algal communities and their implications for glacier surface darkening.
Sci Rep. 2022 Oct 21;12(1):17643. doi: 10.1038/s41598-022-22271-4.
3
Evolution and function of red pigmentation in land plants.
Ann Bot. 2022 Nov 17;130(5):613-636. doi: 10.1093/aob/mcac109.
4
Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan.
Front Plant Sci. 2021 Jul 5;12:689119. doi: 10.3389/fpls.2021.689119. eCollection 2021.
5
Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites.
Front Plant Sci. 2021 Jun 16;12:671981. doi: 10.3389/fpls.2021.671981. eCollection 2021.
6
Altitudinal Zonation of Green Algae Biodiversity in the French Alps.
Front Plant Sci. 2021 Jun 7;12:679428. doi: 10.3389/fpls.2021.679428. eCollection 2021.
7
In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning.
Nat Commun. 2020 Dec 15;11(1):6391. doi: 10.1038/s41467-020-20088-1.
8
Morphological and physicochemical diversity of snow algae from Alaska.
Sci Rep. 2020 Nov 5;10(1):19167. doi: 10.1038/s41598-020-76215-x.
9
Snow and Glacial Algae: A Review.
J Phycol. 2020 Apr;56(2):264-282. doi: 10.1111/jpy.12952. Epub 2020 Feb 29.
10
Snow algae communities in Antarctica: metabolic and taxonomic composition.
New Phytol. 2019 May;222(3):1242-1255. doi: 10.1111/nph.15701. Epub 2019 Feb 27.

本文引用的文献

1
Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques.
Front Plant Sci. 2016 May 20;7:678. doi: 10.3389/fpls.2016.00678. eCollection 2016.
3
A new microscopic method to analyse desiccation-induced volume changes in aeroterrestrial green algae.
J Microsc. 2016 Aug;263(2):192-9. doi: 10.1111/jmi.12409. Epub 2016 Apr 14.
5
Hyperspectral imaging techniques for the characterization of Haematococcus pluvialis (Chlorophyceae).
J Phycol. 2014 Oct;50(5):939-47. doi: 10.1111/jpy.12226. Epub 2014 Sep 17.
7
Integrated 'Omics', Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability.
Front Microbiol. 2015 Nov 25;6:1323. doi: 10.3389/fmicb.2015.01323. eCollection 2015.
9
Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles.
ACS Nano. 2015 May 26;9(5):5454-60. doi: 10.1021/acsnano.5b01298. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验