Suppr超能文献

利用显微光学相干断层扫描技术对气道纤毛和黏液清除进行体内成像。

In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography.

作者信息

Chu Kengyeh K, Unglert Carolin, Ford Tim N, Cui Dongyao, Carruth Robert W, Singh Kanwarpal, Liu Linbo, Birket Susan E, Solomon George M, Rowe Steven M, Tearney Guillermo J

机构信息

Wellman Center for Photomedicine, Department of Determatology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA; Contributed equally as co-authors.

Wellman Center for Photomedicine, Department of Determatology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA.

出版信息

Biomed Opt Express. 2016 Jun 2;7(7):2494-505. doi: 10.1364/BOE.7.002494. eCollection 2016 Jul 1.

Abstract

We have designed and fabricated a 4 mm diameter rigid endoscopic probe to obtain high resolution micro-optical coherence tomography (µOCT) images from the tracheal epithelium of living swine. Our common-path fiber-optic probe used gradient-index focusing optics, a selectively coated prism reflector to implement a circular-obscuration apodization for depth-of-focus enhancement, and a common-path reference arm and an ultra-broadbrand supercontinuum laser to achieve high axial resolution. Benchtop characterization demonstrated lateral and axial resolutions of 3.4 μm and 1.7 μm, respectively (in tissue). Mechanical standoff rails flanking the imaging window allowed the epithelial surface to be maintained in focus without disrupting mucus flow. During in vivo imaging, relative motion was mitigated by inflating an airway balloon to hold the standoff rails on the epithelium. Software implemented image stabilization was also implemented during post-processing. The resulting image sequences yielded co-registered quantitative outputs of airway surface liquid and periciliary liquid layer thicknesses, ciliary beat frequency, and mucociliary transport rate, metrics that directly indicate airway epithelial function that have dominated in vitro research in diseases such as cystic fibrosis, but have not been available in vivo.

摘要

我们设计并制造了一种直径为4毫米的刚性内窥镜探头,用于从活体猪的气管上皮获取高分辨率的显微光学相干断层扫描(µOCT)图像。我们的共光路光纤探头采用了梯度折射率聚焦光学元件、一个选择性镀膜的棱镜反射器以实现用于增强焦深的圆形遮挡变迹,以及一个共光路参考臂和一台超宽带超连续谱激光器以实现高轴向分辨率。台式表征显示横向分辨率和轴向分辨率分别为3.4微米和1.7微米(在组织中)。成像窗口两侧的机械支撑轨可使上皮表面保持在焦点上,而不会扰乱黏液流动。在体内成像过程中,通过向气道气囊充气以将支撑轨固定在上皮上,减轻了相对运动。在后期处理过程中还实施了软件图像稳定化。所得图像序列产生了气道表面液体和纤毛周液体层厚度、纤毛摆动频率和黏液纤毛运输速率的配准定量输出,这些指标直接表明气道上皮功能,在诸如囊性纤维化等疾病的体外研究中占据主导地位,但在体内尚未获得。

相似文献

1
In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography.
Biomed Opt Express. 2016 Jun 2;7(7):2494-505. doi: 10.1364/BOE.7.002494. eCollection 2016 Jul 1.
3
Monitoring airway mucus flow and ciliary activity with optical coherence tomography.
Biomed Opt Express. 2012 Sep 1;3(9):1978-92. doi: 10.1364/BOE.3.001978. Epub 2012 Aug 1.
4
Assessment of acquired mucociliary clearance defects using micro-optical coherence tomography.
Int Forum Allergy Rhinol. 2017 Sep;7(9):920-925. doi: 10.1002/alr.21975. Epub 2017 Jun 28.
5
Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography.
PLoS One. 2013;8(1):e54473. doi: 10.1371/journal.pone.0054473. Epub 2013 Jan 23.
6
Measurement of ciliary beat frequency using Doppler optical coherence tomography.
Int Forum Allergy Rhinol. 2015 Nov;5(11):1048-54. doi: 10.1002/alr.21582. Epub 2015 Jul 2.
7
In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.
Lasers Surg Med. 2018 Mar;50(3):230-235. doi: 10.1002/lsm.22756. Epub 2017 Nov 6.
8
Astigmatism corrected common path probe for optical coherence tomography.
Lasers Surg Med. 2017 Mar;49(3):312-318. doi: 10.1002/lsm.22554. Epub 2016 Aug 4.

引用本文的文献

1
Optical Imaging of Cilia in the Head and Neck.
J Clin Med. 2025 Mar 18;14(6):2059. doi: 10.3390/jcm14062059.
2
Compressed intracellular motility via non-uniform temporal sampling in dynamic optical coherence tomography.
J Biomed Opt. 2024 Jul;29(7):076002. doi: 10.1117/1.JBO.29.7.076002. Epub 2024 Jul 4.
5
volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography.
Optica. 2023 Nov 20;10(11):1439-1451. doi: 10.1364/optica.499927. Epub 2023 Nov 2.
6
Transgenic ferret models define pulmonary ionocyte diversity and function.
Nature. 2023 Sep;621(7980):857-867. doi: 10.1038/s41586-023-06549-9. Epub 2023 Sep 20.
8
Non-contact optical in-vivo sensing of cilia motion by analyzing speckle patterns.
Sci Rep. 2022 Oct 5;12(1):16614. doi: 10.1038/s41598-022-20557-1.
9
Culture and Imaging of Human Nasal Epithelial Organoids.
J Vis Exp. 2021 Dec 17(178). doi: 10.3791/63064.
10
CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling.
Am J Physiol Lung Cell Mol Physiol. 2021 Jul 1;321(1):L119-L129. doi: 10.1152/ajplung.00639.2020. Epub 2021 May 19.

本文引用的文献

1
Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows.
Biomed Opt Express. 2016 Mar 30;7(4):1590-603. doi: 10.1364/BOE.7.001590. eCollection 2016 Apr 1.
3
A functional anatomic defect of the cystic fibrosis airway.
Am J Respir Crit Care Med. 2014 Aug 15;190(4):421-32. doi: 10.1164/rccm.201404-0670OC.
4
An autoregulatory mechanism governing mucociliary transport is sensitive to mucus load.
Am J Respir Cell Mol Biol. 2014 Oct;51(4):485-93. doi: 10.1165/rcmb.2013-0499MA.
7
Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography.
PLoS One. 2013;8(1):e54473. doi: 10.1371/journal.pone.0054473. Epub 2013 Jan 23.
8
Monitoring airway mucus flow and ciliary activity with optical coherence tomography.
Biomed Opt Express. 2012 Sep 1;3(9):1978-92. doi: 10.1364/BOE.3.001978. Epub 2012 Aug 1.
10
Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm.
Opt Express. 2005 May 30;13(11):3931-44. doi: 10.1364/opex.13.003931.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验