Suppr超能文献

基于机器学习的方法来识别与微环境线索相关的细胞形状表型。

Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues.

作者信息

Chen Desu, Sarkar Sumona, Candia Julián, Florczyk Stephen J, Bodhak Subhadip, Driscoll Meghan K, Simon Carl G, Dunkers Joy P, Losert Wolfgang

机构信息

Biophysics Program, University of Maryland, College Park, MD, United States.

Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD, United States.

出版信息

Biomaterials. 2016 Oct;104:104-18. doi: 10.1016/j.biomaterials.2016.06.040. Epub 2016 Jun 25.

Abstract

Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment.

摘要

细胞形态已被确定为干细胞对生物材料反应的一个潜在指标。然而,生物材料中细胞形状表型的确定因细胞群体异质性、微环境异质性以及细胞形态的多参数定义而变得复杂。为了将细胞形态与细胞 - 材料相互作用联系起来,我们开发了一种基于支持向量机的形状表型分析框架。实施了特征选择程序,以选择最重要的细胞形状指标组合,从而构建具有准确性和稳定性的分类器,以识别和预测异质细胞群体中微环境驱动的形态差异。该分析是在多细胞水平上进行的,其中一种“超级细胞”方法使用小群单细胞的平均形状测量值来考虑异质群体和微环境。一种子采样验证算法揭示了分类器稳定性和泛化能力所需的超级细胞大小范围和样本大小。例如,在第1天比较了人骨髓间充质干细胞(hBMSC)对纤维状和平坦微环境的反应。我们的分析表明,表型分析最少需要57个细胞(分组为大小为4的超级细胞)。分析确定,短轴长度、紧实度和平均负曲率的组合是hBMSC对纤维状微环境反应的最强早期基于形状的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7f8/11305428/53ad20b8c0de/nihms-856336-f0001.jpg

相似文献

引用本文的文献

2
Evaluation of image analysis tools for the measurement of cellular morphology.用于测量细胞形态的图像分析工具的评估
Front Cell Dev Biol. 2025 May 15;13:1572212. doi: 10.3389/fcell.2025.1572212. eCollection 2025.
7
Machine learning and 3D bioprinting.机器学习与3D生物打印
Int J Bioprint. 2023 Mar 24;9(4):717. doi: 10.18063/ijb.717. eCollection 2023.
10
Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation.基于形态学的深度学习方法预测成骨分化
Front Bioeng Biotechnol. 2022 Jan 27;9:802794. doi: 10.3389/fbioe.2021.802794. eCollection 2021.

本文引用的文献

4
Scientific method: statistical errors.科学方法:统计误差
Nature. 2014 Feb 13;506(7487):150-2. doi: 10.1038/506150a.
5
Understanding health and disease with multidimensional single-cell methods.用多维单细胞方法理解健康和疾病。
J Phys Condens Matter. 2014 Feb 19;26(7):073102. doi: 10.1088/0953-8984/26/7/073102. Epub 2014 Jan 22.
6
Measuring stem cell dimensionality in tissue scaffolds.测量组织支架中的干细胞维度。
Biomaterials. 2014 Mar;35(9):2558-67. doi: 10.1016/j.biomaterials.2013.12.092. Epub 2014 Jan 15.
8
Spatial control of adult stem cell fate using nanotopographic cues.利用纳米拓扑线索对成年干细胞命运进行空间控制。
Biomaterials. 2014 Mar;35(8):2401-2410. doi: 10.1016/j.biomaterials.2013.11.037. Epub 2013 Dec 31.
9
Revised standards for statistical evidence.修订后的统计证据标准。
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19313-7. doi: 10.1073/pnas.1313476110. Epub 2013 Nov 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验