Chen Chen, Ahmed Midhat, Häfner Tom, Klämpfl Florian, Stelzle Florian, Schmidt Michael
Chair of Photonic Technologies, Friedrich-Alexander Universität Erlangen-Nürnberg, Konrad-Zuse-Str. 3/5, D-91052 Erlangen, Germany.
Erlangen Graduate School in Advanced Optical Technologies, Paul-Gordan-Str. 6, D-91052 Erlangen, Germany.
Sci Rep. 2016 Jul 26;6:30567. doi: 10.1038/srep30567.
Microfluidic devices are oftenly used to calibrate the imaging reconstruction, because they simulate the morphology of microvasculature. However, for lack of optical properties in microfluidics, the functional recovery of oximetry information cannot be verified. In this work, we describe the fabrication of a novel turbid optofluidic tissue phantom. It is designed to mimic the vascular perfusion and the turbid nature of cutaneous tissue. This phantom contains an interior hollow microfluidic structure with a diameter of ϕave = 50 μm. The microfluidic structure includes the geometry of an inlet, a river-like assay and an outlet. This structure can be perfused by hemoglobin solution to mimic the cutaneous micro-circulation. The multiple-layered phantom matrices exhibit the representative optical parameters of human skin cutis, namely the absorption coefficient μa and the reduced scattering coefficient . The geometry of the generated microfluidic structure is investigated by using Spectral-Domain Optical Coherence Tomography. This optofluidic phantom bridges the gap between tissue equivalent phantoms and Lab-On-Chip devices. Perspectively, this device can be used to calibrate a variety of optical angiographic imaging approaches.
微流控装置常用于校准成像重建,因为它们能模拟微血管形态。然而,由于微流控缺乏光学特性,血氧测定信息的功能恢复无法得到验证。在这项工作中,我们描述了一种新型浑浊光流体组织模型的制作。它旨在模拟皮肤组织的血管灌注和浑浊特性。该模型包含一个内部中空的微流控结构,其平均直径为ϕave = 50μm。微流控结构包括入口、河流状检测区域和出口的几何形状。这种结构可以用血红蛋白溶液灌注,以模拟皮肤微循环。多层模型基质呈现出人类皮肤真皮层的代表性光学参数,即吸收系数μa和约化散射系数。通过使用光谱域光学相干断层扫描来研究生成的微流控结构的几何形状。这种光流体模型弥合了组织等效模型和芯片实验室设备之间的差距。从长远来看,该装置可用于校准各种光学血管造影成像方法。