Suppr超能文献

神经科学中的降维

Dimensionality reduction in neuroscience.

作者信息

Pang Rich, Lansdell Benjamin J, Fairhall Adrienne L

机构信息

Neuroscience Graduate Program, University of Washington, Box 357270, T-471 Health Sciences Ctr, Seattle, WA 98195, USA.

Department of Applied Mathematics, University of Washington, Lewis Hall #202, Box 353925, Seattle, WA 98195, USA.

出版信息

Curr Biol. 2016 Jul 25;26(14):R656-60. doi: 10.1016/j.cub.2016.05.029.

Abstract

The nervous system extracts information from its environment and distributes and processes that information to inform and drive behaviour. In this task, the nervous system faces a type of data analysis problem, for, while a visual scene may be overflowing with information, reaching for the television remote before us requires extraction of only a relatively small fraction of that information. We could care about an almost infinite number of visual stimulus patterns, but we don't: we distinguish two actors' faces with ease but two different images of television static with significant difficulty. Equally, we could respond with an almost infinite number of movements, but we don't: the motions executed to pick up the remote are highly stereotyped and related to many other grasping motions. If we were to look at what was going on inside the brain during this task, we would find populations of neurons whose electrical activity was highly structured and correlated with the images on the screen and the action of localizing and picking up the remote.

摘要

神经系统从其所处环境中提取信息,并对这些信息进行分配和处理,以指导和驱动行为。在这项任务中,神经系统面临着一种数据分析问题,因为尽管视觉场景可能充满了信息,但要伸手去拿我们面前的电视遥控器,只需要提取其中相对较少的一部分信息。我们可能关心几乎无穷无尽的视觉刺激模式,但实际上并非如此:我们能轻松区分两个演员的面孔,却很难区分电视上两种不同的静电图像。同样,我们可以做出几乎无穷无尽的动作,但我们并没有:拿起遥控器所执行的动作是高度刻板的,并且与许多其他抓握动作相关。如果我们观察在执行这项任务时大脑内部的情况,就会发现大量神经元,它们的电活动具有高度的结构性,并且与屏幕上的图像以及定位和拿起遥控器的动作相关。

相似文献

1
Dimensionality reduction in neuroscience.
Curr Biol. 2016 Jul 25;26(14):R656-60. doi: 10.1016/j.cub.2016.05.029.
3
Visuomotor coordination and motor representation by human temporal lobe neurons.
J Cogn Neurosci. 2012 Mar;24(3):600-10. doi: 10.1162/jocn_a_00160. Epub 2011 Nov 8.
6
Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses.
J Neurophysiol. 1992 Mar;67(3):680-703. doi: 10.1152/jn.1992.67.3.680.
7
Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons.
J Neurophysiol. 2005 Mar;93(3):1342-57. doi: 10.1152/jn.00553.2004. Epub 2004 Oct 20.
8
Extending the Cortical Grasping Network: Pre-supplementary Motor Neuron Activity During Vision and Grasping of Objects.
Cereb Cortex. 2016 Dec;26(12):4435-4449. doi: 10.1093/cercor/bhw315. Epub 2016 Oct 12.
9
Modulation of the face- and body-selective visual regions by the motion and emotion of point-light face and body stimuli.
Neuroimage. 2012 Jan 16;59(2):1700-12. doi: 10.1016/j.neuroimage.2011.08.073. Epub 2011 Sep 2.

引用本文的文献

1
Model Predictive Control on the Neural Manifold.
ArXiv. 2025 Aug 11:arXiv:2406.14801v2.
2
Modelling low-dimensional interacting brain networks reveals organising principle in human cognition.
Netw Neurosci. 2025 May 8;9(2):661-681. doi: 10.1162/netn_a_00434. eCollection 2025.
3
A mechanism for the emergence of low-dimensional structures in brain dynamics.
NPJ Syst Biol Appl. 2025 Apr 10;11(1):32. doi: 10.1038/s41540-025-00499-w.
4
Mapping the Psychosis Spectrum - Imaging Neurosubtypes from Multi-Scale Functional Network Connectivity.
bioRxiv. 2025 Mar 28:2025.02.11.637551. doi: 10.1101/2025.02.11.637551.
5
Hierarchical emergence of opponent coding in auditory belt cortex.
J Neurophysiol. 2025 Mar 1;133(3):944-964. doi: 10.1152/jn.00519.2024. Epub 2025 Feb 18.
6
Rastermap: a discovery method for neural population recordings.
Nat Neurosci. 2025 Jan;28(1):201-212. doi: 10.1038/s41593-024-01783-4. Epub 2024 Oct 16.
8
Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number.
Neuron. 2024 May 15;112(10):1694-1709.e5. doi: 10.1016/j.neuron.2024.02.011. Epub 2024 Mar 6.
9
Time-varying generalized linear models: characterizing and decoding neuronal dynamics in higher visual areas.
Front Comput Neurosci. 2024 Jan 29;18:1273053. doi: 10.3389/fncom.2024.1273053. eCollection 2024.

本文引用的文献

1
Analysis of Neuronal Spike Trains, Deconstructed.
Neuron. 2016 Jul 20;91(2):221-59. doi: 10.1016/j.neuron.2016.05.039.
2
Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition.
J Neurosci Methods. 2016 Jan 30;258:1-15. doi: 10.1016/j.jneumeth.2015.10.010. Epub 2015 Oct 31.
3
From the neuron doctrine to neural networks.
Nat Rev Neurosci. 2015 Aug;16(8):487-97. doi: 10.1038/nrn3962. Epub 2015 Jul 8.
4
Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe.
Front Comput Neurosci. 2014 Aug 13;8:70. doi: 10.3389/fncom.2014.00070. eCollection 2014.
5
Dimensionality reduction for large-scale neural recordings.
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
6
Second order dimensionality reduction using minimum and maximum mutual information models.
PLoS Comput Biol. 2011 Oct;7(10):e1002249. doi: 10.1371/journal.pcbi.1002249. Epub 2011 Oct 27.
8
Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.
9
Selectivity for multiple stimulus features in retinal ganglion cells.
J Neurophysiol. 2006 Nov;96(5):2724-38. doi: 10.1152/jn.00995.2005. Epub 2006 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验