Subochev Pavel V, Deán-Ben Xosé Luís, Chen Zhenyue, Prudnikov Maxim B, Vorobev Vladimir A, Kurnikov Alexey A, Orlova Anna G, Postnikova Anna S, Kharitonov Alexey V, Proyavin Mikhail D, Ovsyannikov Roman I, Sanin Anatoly G, Kirillin Mikhail Y, Montero de Espinosa Francisco, Turchin Ilya V, Razansky Daniel
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia.
Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Light Sci Appl. 2025 Jul 7;14(1):239. doi: 10.1038/s41377-025-01894-y.
Owing to its unique ability to capture volumetric tomographic information with a single light flash, optoacoustic (OA) tomography has recently demonstrated ultrafast imaging speeds ultimately limited by the ultrasound time-of-flight. The method's scalability and the achievable spatial resolution are yet limited by the narrow bandwidth of piezo-composite arrays currently employed for OA signal detection. Here we report on the first implementation of high-density spherical array technology based on flexible polyvinylidene difluoride films featuring ultrawideband (0.3-40 MHz) sub mm area elements, thus enabling real-time multi-scale volumetric imaging with 22-35 µm spatial resolution, superior image fidelity and over an order of magnitude signal-to-noise enhancement compared to piezo-composite equivalents. We further demonstrate five-dimensional (spectroscopic, time-resolved, volumetric) imaging capabilities by visualizing fast stimulus-evoked cerebral oxygenation changes in mice and performing real-time functional angiography of deep human micro-vasculature. The new technology thus leverages the true potential of OA for quantitative high-resolution visualization of rapid bio-dynamics across scales.
由于光声(OA)断层扫描能够通过单次闪光捕获体积断层信息,其独特能力使其最近展现出超快成像速度,而这最终受限于超声飞行时间。该方法的可扩展性和可实现的空间分辨率仍受当前用于OA信号检测的压电复合阵列窄带宽的限制。在此,我们报道了基于柔性聚偏二氟乙烯薄膜的高密度球形阵列技术的首次应用,该薄膜具有超宽带(0.3 - 40 MHz)亚毫米面积元件,从而实现了具有22 - 35 µm空间分辨率的实时多尺度体积成像、卓越的图像保真度,并且与压电复合等效物相比,信噪比提高了一个数量级以上。我们通过可视化小鼠快速刺激诱发的脑氧合变化以及对人体深部微血管进行实时功能血管造影,进一步展示了五维(光谱、时间分辨、体积)成像能力。因此,这项新技术充分发挥了OA在跨尺度定量高分辨率可视化快速生物动力学方面的真正潜力。