文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于不同传感配置的光声断层成像术的内源性和外源性对比剂的综述。

A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations.

机构信息

Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Sensors (Basel). 2020 Sep 29;20(19):5595. doi: 10.3390/s20195595.


DOI:10.3390/s20195595
PMID:33003566
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7582683/
Abstract

Optical-based sensing approaches have long been an indispensable way to detect molecules in biological tissues for various biomedical research and applications. The advancement in optical microscopy is one of the main drivers for discoveries and innovations in both life science and biomedical imaging. However, the shallow imaging depth due to the use of ballistic photons fundamentally limits optical imaging approaches' translational potential to a clinical setting. Photoacoustic (PA) tomography (PAT) is a rapidly growing hybrid imaging modality that is capable of acoustically detecting optical contrast. PAT uniquely enjoys high-resolution deep-tissue imaging owing to the utilization of diffused photons. The exploration of endogenous contrast agents and the development of exogenous contrast agents further improve the molecular specificity for PAT. PAT's versatile design and non-invasive nature have proven its great potential as a biomedical imaging tool for a multitude of biomedical applications. In this review, representative endogenous and exogenous PA contrast agents will be introduced alongside common PAT system configurations, including the latest advances of all-optical acoustic sensing techniques.

摘要

基于光学的传感方法一直是检测生物组织中分子的不可或缺的手段,适用于各种生物医学研究和应用。光学显微镜的进步是生命科学和生物医学成像领域发现和创新的主要驱动力之一。然而,由于使用弹道光子,成像深度较浅,从根本上限制了光学成像方法在临床环境中的转化潜力。光声(PA)断层扫描(PAT)是一种快速发展的混合成像模式,能够对光声对比度进行声学检测。由于利用了漫射光子,PAT 具有独特的高分辨率深层组织成像能力。内源性对比剂的探索和外源性对比剂的开发进一步提高了 PAT 的分子特异性。PAT 的多功能设计和非侵入性本质已证明其作为一种生物医学成像工具,适用于多种生物医学应用具有巨大的潜力。在这篇综述中,将介绍代表性的内源性和外源性 PA 对比剂以及常见的 PAT 系统配置,包括全光学声传感技术的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/c1be8377072d/sensors-20-05595-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/ea500bd88147/sensors-20-05595-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/c9cc16e08920/sensors-20-05595-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/94a4fa3028b1/sensors-20-05595-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/10bf5aa671f9/sensors-20-05595-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/00b1789caa20/sensors-20-05595-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/b4486144fe5d/sensors-20-05595-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/f381b76c20ee/sensors-20-05595-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/a9c95a66e1de/sensors-20-05595-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/e150775b19a0/sensors-20-05595-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/a71ea1a30a06/sensors-20-05595-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/144a2aedeee3/sensors-20-05595-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/16dd1a27cdaf/sensors-20-05595-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/a3bd54252edb/sensors-20-05595-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/c1be8377072d/sensors-20-05595-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/ea500bd88147/sensors-20-05595-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/c9cc16e08920/sensors-20-05595-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/94a4fa3028b1/sensors-20-05595-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/10bf5aa671f9/sensors-20-05595-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/00b1789caa20/sensors-20-05595-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/b4486144fe5d/sensors-20-05595-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/f381b76c20ee/sensors-20-05595-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/a9c95a66e1de/sensors-20-05595-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/e150775b19a0/sensors-20-05595-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/a71ea1a30a06/sensors-20-05595-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/144a2aedeee3/sensors-20-05595-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/16dd1a27cdaf/sensors-20-05595-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/a3bd54252edb/sensors-20-05595-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa1d/7582683/c1be8377072d/sensors-20-05595-g014.jpg

相似文献

[1]
A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations.

Sensors (Basel). 2020-9-29

[2]
Recent progress in photoacoustic molecular imaging.

Curr Opin Chem Biol. 2018-4-7

[3]
A practical guide to photoacoustic tomography in the life sciences.

Nat Methods. 2016-7-28

[4]
Photoacoustic tomography: principles and advances.

Electromagn Waves (Camb). 2014

[5]
Tutorial on photoacoustic tomography.

J Biomed Opt. 2016-6

[6]
Small-animal whole-body photoacoustic tomography: a review.

IEEE Trans Biomed Eng. 2014-5

[7]
Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications.

Adv Mater. 2018-12-17

[8]
Recent advances in photoacoustic contrast agents for in vivo imaging.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-7

[9]
Perspective on fast-evolving photoacoustic tomography.

J Biomed Opt. 2021-6

[10]
A review of clinical photoacoustic imaging: Current and future trends.

Photoacoustics. 2019-11-7

引用本文的文献

[1]
Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review.

Bioengineered. 2024-12

[2]
Machine Learning Enabled Photoacoustic Spectroscopy for Noninvasive Assessment of Breast Tumor Progression : A Preclinical Study.

ACS Sens. 2024-2-23

[3]
DNA-Based Near-Infrared Voltage Sensors.

ACS Sens. 2023-10-27

[4]
Intraoperative Imaging in Hepatopancreatobiliary Surgery.

Cancers (Basel). 2023-7-20

[5]
Activity-Based Photoacoustic Probes for Detection of Disease Biomarkers beyond Oncology.

ACS Bio Med Chem Au. 2023-3-10

[6]
Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment.

Theranostics. 2023

[7]
Application of photoacoustic computed tomography in biomedical imaging: A literature review.

Bioeng Transl Med. 2022-9-29

[8]
Label-free photothermal optical coherence microscopy to locate desired regions of interest in multiphoton imaging of volumetric specimens.

Sci Rep. 2023-3-3

[9]
Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity.

Int J Mol Sci. 2023-1-23

[10]
Longitudinal In Vivo Monitoring of Atheroprogression in Hypercholesterolemic Mice Using Photoacoustic Imaging.

Thromb Haemost. 2023-5

本文引用的文献

[1]
High-speed label-free ultraviolet photoacoustic microscopy for histology-like imaging of unprocessed biological tissues.

Opt Lett. 2020-10-1

[2]
Colloidal Porous AuAg Alloyed Nanoparticles for Enhanced Photoacoustic Imaging.

ACS Appl Mater Interfaces. 2020-7-22

[3]
Grüneisen-relaxation photoacoustic microscopy at 1.7  µm and its application in lipid imaging.

Opt Lett. 2020-6-15

[4]
Photothermally tunable Fabry-Pérot fiber interferometer for photoacoustic mesoscopy.

Biomed Opt Express. 2020-4-16

[5]
High-speed wide-field multi-parametric photoacoustic microscopy.

Opt Lett. 2020-5-15

[6]
Micro-rocket robot with all-optic actuating and tracking in blood.

Light Sci Appl. 2020-5-11

[7]
Tomographic imaging with an ultrasound and LED-based photoacoustic system.

Biomed Opt Express. 2020-3-23

[8]
Spatial heterogeneity of oxygenation and haemodynamics in breast cancer resolved in vivo by conical multispectral optoacoustic mesoscopy.

Light Sci Appl. 2020-4-13

[9]
Evaluation of visible NIR-I and NIR-II light penetration for photoacoustic imaging in rat organs.

Opt Express. 2020-3-16

[10]
High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies.

Nat Biomed Eng. 2020-3-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索