Suppr超能文献

用于体内电路分析的无纤维多色神经光电电极

Fiberless multicolor neural optoelectrode for in vivo circuit analysis.

作者信息

Kampasi Komal, Stark Eran, Seymour John, Na Kyounghwan, Winful Herbert G, Buzsáki György, Wise Kensall D, Yoon Euisik

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016, USA.

出版信息

Sci Rep. 2016 Aug 3;6:30961. doi: 10.1038/srep30961.

Abstract

Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.

摘要

要在完整动物的深部脑结构中充分发挥光遗传学方法的潜力,需要在高空间和时间分辨率下对神经元进行光学操纵,同时记录这些神经元的电数据。在此,我们展示了首个带有单片集成光波导混合器的无光纤光电极,该混合器可在一个公共波导端口输送多色光,以在体内实现对同一神经元群体的多色调制。我们通过一个梯度折射率(GRIN)透镜实现了边发射注入激光二极管(ILD)与介质光波导混合器之间的高效耦合,从而成功实现了该器件。GRIN透镜的使用具备多项设计特性,包括ILD与波导之间的高光耦合和热隔离。我们在麻醉小鼠的完整大脑中对海马CA1区锥体细胞中共表达通道视紫红质-2和古菌视紫红质的情况进行了验证,在给定局部区域实现了对完全相同神经元的高质量记录、激活和沉默。这种完全集成的方法展示了在密集脑区中对相同或不同神经元群体进行独立激活和沉默并同时记录所需的空间精度和可扩展性,从而极大地提升了当前可用光遗传学工具集的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bb0/4971539/b9c26a1e6999/srep30961-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验