Kampasi Komal, English Daniel F, Seymour John, Stark Eran, McKenzie Sam, Vöröslakos Mihály, Buzsáki György, Wise Kensall D, Yoon Euisik
Center for Micro and Nanotechnology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (current affiliation).
NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016, USA.
Microsyst Nanoeng. 2018;4. doi: 10.1038/s41378-018-0009-2. Epub 2018 Jun 4.
Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intra- and extra-cellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multi-site optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations . We describe the design, fabrication, and assembly of low-noise, multi-site/multi-color optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.
光遗传学可实现对神经元活动的光学操控,并且越来越多地与细胞内和细胞外电生理记录相结合。尽管如果能够在足够的空间和时间分辨率上实现对不同神经群体的独立控制,光遗传学的通用性将会提高,但目前对基因鉴定的神经元类别进行光学操控。我们报告了一种可扩展的多位点光电极设计,该设计允许对两个空间混合的神经元群体同时进行光遗传学控制。我们描述了低噪声、多位点/多颜色光电极的设计、制造和组装。四杆组件的每个杆都与8个记录位点和一个横截面为7×30μm的双色波导混合器单片集成,通过梯度折射率(GRIN)透镜与405nm和635nm注入激光二极管(ILD)耦合,以满足光学和热设计要求。为了更好地理解基于二极管激活期间记录通道上产生的噪声,我们开发了一种用于电磁干扰耦合机制的集总电路建模方法,并使用该方法将伪影限制在100μV以下,直至450μW的光输出功率。我们将封装好的设备植入清醒小鼠的CA1锥体层,在锥体细胞中表达通道视紫红质-2,在表达小白蛋白的中间神经元中表达深红视蛋白,并使用亚毫瓦照明实现对每种细胞类型的光学激发。我们强调了这项技术在神经回路功能剖析中的潜在用途。