McGregor M J, Flores T P, Sternberg M J
Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, UK.
Protein Eng. 1989 May;2(7):521-6. doi: 10.1093/protein/2.7.521.
The use of neural networks to improve empirical secondary structure prediction is explored with regard to the identification of the position and conformational class of beta-turns, a four-residue chain reversal. Recently an algorithm was developed for beta-turn predictions based on the empirical approach of Chou and Fasman using different parameters for three classes (I, II and non-specific) of beta-turns. In this paper, using the same data, an alternative approach to derive an empirical prediction method is used based on neural networks which is a general learning algorithm extensively used in artificial intelligence. Thus the results of the two approaches can be compared. The most severe test of prediction accuracy is the percentage of turn predictions that are correct and the neural network gives an overall improvement from 20.6% to 26.0%. The proportion of correctly predicted residues is 71%, compared to a chance level of about 58%. Thus neural networks provide a method of obtaining more accurate predictions from empirical data than a simpler method of deriving propensities.
关于β-转角(一种四残基链反转结构)的位置和构象类别的识别,探讨了使用神经网络来改进经验性二级结构预测的方法。最近,基于Chou和Fasman的经验方法,针对β-转角的三个类别(I类、II类和非特异性类)使用不同参数开发了一种β-转角预测算法。在本文中,使用相同的数据,基于神经网络采用了一种替代方法来推导经验预测方法,神经网络是一种在人工智能中广泛使用的通用学习算法。因此,可以比较这两种方法的结果。预测准确性的最严格测试是正确转角预测的百分比,神经网络使总体准确率从20.6%提高到了26.0%。正确预测残基的比例为71%,而随机水平约为58%。因此,与一种更简单的推导倾向的方法相比,神经网络提供了一种从经验数据中获得更准确预测的方法。