Suppr超能文献

一个主动的任务集影响着基底神经节中反应抑制的实施方式。

A proactive task set influences how response inhibition is implemented in the basal ganglia.

作者信息

Leunissen Inge, Coxon James P, Swinnen Stephan P

机构信息

KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium.

Movement Neuroscience Laboratory, University of Auckland, New Zealand.

出版信息

Hum Brain Mapp. 2016 Dec;37(12):4706-4717. doi: 10.1002/hbm.23338. Epub 2016 Aug 4.

Abstract

Increasing a participant's ability to prepare for response inhibition is known to result in longer Go response times and is thought to engage a "top-down fronto-striatal inhibitory task set." This premise is supported by the observation of anterior striatum activation in functional magnetic resonance imaging (fMRI) analyses that focus on uncertain versus certain Go trials. It is assumed that setting up a proactive inhibitory task set also influences how participants subsequently implement stopping. To assess this assumption, we aimed to manipulate the degree of proactive inhibition in a modified stop-signal task to see how this manipulation influences activation when reacting to the Stop cue. Specifically, we tested whether there is differential activity of basal ganglia nuclei, namely the subthalamic nucleus (STN) and anterior striatum, on Stop trials when stop-signal probability was relatively low (20%) or high (40%). Successful stopping was associated with increased STN activity when Stop trials were infrequent and increased caudate head activation when Stop trials were more likely, suggesting a different implementation of reactive response inhibition by the basal ganglia for differing degrees of proactive response control. Hum Brain Mapp 37:4706-4717, 2016. © 2016 Wiley Periodicals, Inc.

摘要

提高参与者为反应抑制做准备的能力会导致更长的“继续”反应时间,并且被认为涉及一种“自上而下的额纹状体抑制任务集”。这一前提得到了功能性磁共振成像(fMRI)分析中对不确定与确定“继续”试验的观察结果的支持,该分析观察到了前纹状体的激活。据推测,建立一个主动抑制任务集也会影响参与者随后实施停止的方式。为了评估这一假设,我们旨在通过修改停止信号任务来操纵主动抑制的程度,以观察这种操纵在对停止提示做出反应时如何影响激活情况。具体而言,我们测试了在停止信号概率相对较低(20%)或较高(40%)时,基底神经节核团,即丘脑底核(STN)和前纹状体,在停止试验中的活动是否存在差异。当停止试验不频繁时,成功停止与STN活动增加相关;当停止试验更有可能出现时,成功停止与尾状核头部激活增加相关,这表明基底神经节对不同程度的主动反应控制进行反应性反应抑制的方式不同。《人类大脑图谱》37:4706 - 4717,2016年。© 2016威利期刊公司。

相似文献

1
A proactive task set influences how response inhibition is implemented in the basal ganglia.
Hum Brain Mapp. 2016 Dec;37(12):4706-4717. doi: 10.1002/hbm.23338. Epub 2016 Aug 4.
2
A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
Neuropsychologia. 2018 Jan 8;108:117-134. doi: 10.1016/j.neuropsychologia.2017.11.033. Epub 2017 Dec 1.
3
Proactive Response Inhibition and Subcortical Gray Matter Integrity in Traumatic Brain Injury.
Neurorehabil Neural Repair. 2017 Mar;31(3):228-239. doi: 10.1177/1545968316675429. Epub 2016 Oct 28.
4
Expectations and violations: delineating the neural network of proactive inhibitory control.
Hum Brain Mapp. 2013 Sep;34(9):2015-24. doi: 10.1002/hbm.22047. Epub 2012 Feb 22.
5
Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T.
Hum Brain Mapp. 2017 Jun;38(6):3226-3248. doi: 10.1002/hbm.23586. Epub 2017 Mar 27.
6
How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.
J Neurosci. 2012 Aug 8;32(32):10870-8. doi: 10.1523/JNEUROSCI.0902-12.2012.
7
Using subjective expectations to model the neural underpinnings of proactive inhibition.
Eur J Neurosci. 2019 Jun;49(12):1575-1586. doi: 10.1111/ejn.14308. Epub 2019 Jan 1.
8
Subcortical processes of motor response inhibition during a stop signal task.
Neuroimage. 2008 Jul 15;41(4):1352-63. doi: 10.1016/j.neuroimage.2008.04.023. Epub 2008 Apr 11.
9
Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
Neuropsychologia. 2019 Dec;135:107220. doi: 10.1016/j.neuropsychologia.2019.107220. Epub 2019 Oct 3.

引用本文的文献

3
The effect of task complexity on the neural network for response inhibition: An ALE meta-analysis.
Neurosci Biobehav Rev. 2024 Mar;158:105544. doi: 10.1016/j.neubiorev.2024.105544. Epub 2024 Jan 12.
4
Proactively Adjusting Stopping: Response Inhibition is Faster when Stopping Occurs Frequently.
J Cogn. 2023 May 4;6(1):22. doi: 10.5334/joc.264. eCollection 2023.
5
Investigating the role of contextual cues and interhemispheric inhibitory mechanisms in response-selective stopping: a TMS study.
Cogn Affect Behav Neurosci. 2023 Feb;23(1):84-99. doi: 10.3758/s13415-022-01047-3. Epub 2022 Nov 16.
6
Failing to attend versus failing to stop: Single-trial decomposition of action-stopping in the stop signal task.
Behav Res Methods. 2023 Dec;55(8):4099-4117. doi: 10.3758/s13428-022-02008-x. Epub 2022 Nov 7.
7
Prepared and reactive inhibition in smokers and non-smokers.
Behav Brain Res. 2023 Feb 2;437:114120. doi: 10.1016/j.bbr.2022.114120. Epub 2022 Sep 28.
9
Motor Imagery Combined With Physical Training Improves Response Inhibition in the Stop Signal Task.
Front Psychol. 2022 Jun 20;13:905579. doi: 10.3389/fpsyg.2022.905579. eCollection 2022.
10
Effects of beta-band and gamma-band rhythmic stimulation on motor inhibition.
iScience. 2022 Apr 30;25(5):104338. doi: 10.1016/j.isci.2022.104338. eCollection 2022 May 20.

本文引用的文献

1
A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition.
Nat Rev Neurosci. 2015 Dec;16(12):719-32. doi: 10.1038/nrn4038. Epub 2015 Nov 4.
2
Proactive and Reactive Response Inhibition across the Lifespan.
PLoS One. 2015 Oct 21;10(10):e0140383. doi: 10.1371/journal.pone.0140383. eCollection 2015.
4
Contrasting network and modular perspectives on inhibitory control.
Trends Cogn Sci. 2015 Aug;19(8):445-52. doi: 10.1016/j.tics.2015.06.006. Epub 2015 Jul 6.
5
Putting the brakes on inhibitory models of frontal lobe function.
Neuroimage. 2015 Jun;113:340-55. doi: 10.1016/j.neuroimage.2015.03.053. Epub 2015 Mar 25.
6
The subcortical cocktail problem; mixed signals from the subthalamic nucleus and substantia nigra.
PLoS One. 2015 Mar 20;10(3):e0120572. doi: 10.1371/journal.pone.0120572. eCollection 2015.
7
Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding.
Psychol Rev. 2015 Apr;122(2):115-47. doi: 10.1037/a0038893. Epub 2015 Feb 23.
8
The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity.
J Neurosci. 2015 Jan 14;35(2):786-94. doi: 10.1523/JNEUROSCI.3093-13.2015.
9
Should I stay or should I go? Conceptual underpinnings of goal-directed actions.
Front Syst Neurosci. 2014 Nov 3;8:206. doi: 10.3389/fnsys.2014.00206. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验