Department of Radiology, Uppsala University, Uppsala, Sweden.
Antaros Medical, BioVenture Hub, Mölndal, Sweden.
Magn Reson Med. 2019 Apr;81(4):2736-2745. doi: 10.1002/mrm.27550. Epub 2018 Oct 12.
An approach for the automated segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in multicenter water-fat MRI scans of the abdomen was investigated, using 2 different neural network architectures.
The 2 fully convolutional network architectures U-Net and V-Net were trained, evaluated, and compared using the water-fat MRI data. Data of the study Tellus with 90 scans from a single center was used for a 10-fold cross-validation in which the most successful configuration for both networks was determined. These configurations were then tested on 20 scans of the multicenter study beta-cell function in JUvenile Diabetes and Obesity (BetaJudo), which involved a different study population and scanning device.
The U-Net outperformed the used implementation of the V-Net in both cross-validation and testing. In cross-validation, the U-Net reached average dice scores of 0.988 (VAT) and 0.992 (SAT). The average of the absolute quantification errors amount to 0.67% (VAT) and 0.39% (SAT). On the multicenter test data, the U-Net performs only slightly worse, with average dice scores of 0.970 (VAT) and 0.987 (SAT) and quantification errors of 2.80% (VAT) and 1.65% (SAT).
The segmentations generated by the U-Net allow for reliable quantification and could therefore be viable for high-quality automated measurements of VAT and SAT in large-scale studies with minimal need for human intervention. The high performance on the multicenter test data furthermore shows the robustness of this approach for data of different patient demographics and imaging centers, as long as a consistent imaging protocol is used.
研究了一种使用两种不同神经网络架构对腹部多中心水脂 MRI 扫描进行内脏脂肪组织 (VAT) 和皮下脂肪组织 (SAT) 自动分割的方法。
使用水脂 MRI 数据对两种完全卷积网络架构 U-Net 和 V-Net 进行了训练、评估和比较。研究中的 Tellus 数据有 90 个来自单个中心的扫描,用于 10 折交叉验证,确定了这两种网络最成功的配置。然后在多中心研究 beta 细胞功能的 BetaJudo 中对 20 个扫描进行了测试,该研究涉及不同的研究人群和扫描设备。
在交叉验证和测试中,U-Net 的表现均优于所使用的 V-Net 实现。在交叉验证中,U-Net 达到了 0.988(VAT)和 0.992(SAT)的平均骰子评分。平均绝对定量误差为 0.67%(VAT)和 0.39%(SAT)。在多中心测试数据上,U-Net 的表现仅略差,平均骰子评分分别为 0.970(VAT)和 0.987(SAT),定量误差分别为 2.80%(VAT)和 1.65%(SAT)。
U-Net 生成的分割结果可实现可靠的定量,因此可在需要最小人为干预的大规模研究中用于高质量的 VAT 和 SAT 自动测量。该方法在多中心测试数据上的高性能进一步表明,只要使用一致的成像协议,该方法对于具有不同患者人口统计学和成像中心的数据具有稳健性。