Suppr超能文献

CAFT:一种基于深度学习的用于大型队列研究的全面腹部脂肪分析工具。

CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies.

机构信息

Signal and Image Processing Group, Institute of Bioengineering and Bioimaging, 02-02, Helios,11, Biopolis Way, Singapore, 138667, Singapore.

Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore, 308433, Singapore.

出版信息

MAGMA. 2022 Apr;35(2):205-220. doi: 10.1007/s10334-021-00946-9. Epub 2021 Aug 2.

Abstract

BACKGROUND

There is increasing appreciation of the association of obesity beyond co-morbidities, such as cancers, Type 2 diabetes, hypertension, and stroke to also impact upon the muscle to give rise to sarcopenic obesity. Phenotypic knowledge of obesity is crucial for profiling and management of obesity, as different fat-subcutaneous adipose tissue depots (SAT) and visceral adipose tissue depots (VAT) have various degrees of influence on metabolic syndrome and morbidities. Manual segmentation is time consuming and laborious. Study focuses on the development of a deep learning-based, complete data processing pipeline for MRI-based fat analysis, for large cohort studies which include (1) data augmentation and preprocessing (2) model zoo (3) visualization dashboard, and (4) correction tool, for automated quantification of fat compartments SAT and VAT.

METHODS

Our sample comprised 190 healthy community-dwelling older adults from the Geri-LABS study with mean age of 67.85 ± 7.90 years, BMI 23.75 ± 3.65 kg/m, 132 (69.5%) female, and mainly Chinese ethnicity. 3D-modified Dixon T1-weighted gradient-echo MR images were acquired. Residual global aggregation-based 3D U-Net (RGA-U-Net) and standard 3D U-Net were trained to segment SAT, VAT, superficial and deep subcutaneous adipose tissue depots (SSAT and DSAT). Manual segmentation from 26 subjects was used as ground truth during training. Data augmentations, random bias, noise and ghosting were carried out to increase the number of training datasets to 130. Segmentation accuracy was evaluated using Dice and Hausdorff metrics.

RESULTS

The accuracy of segmentation was SSAT:0.92, DSAT:0.88 and VAT:0.9. Average Hausdorff distance was less than 5 mm. Automated segmentation significantly correlated R > 0.99 (p < 0.001) with ground truth for all 3-fat compartments. Predicted volumes were within ± 1.96SD from Bland-Altman analysis.

CONCLUSIONS

DL-based, comprehensive SSAT, DSAT, and VAT analysis tool showed high accuracy and reproducibility and provided a comprehensive fat compartment composition analysis and visualization in less than 10 s.

摘要

背景

肥胖与多种合并症有关,如癌症、2 型糖尿病、高血压和中风,此外,肥胖还会影响肌肉,导致肌肉减少性肥胖。肥胖的表型知识对于肥胖症的分析和管理至关重要,因为不同的脂肪组织(皮下脂肪组织和内脏脂肪组织)对代谢综合征和多种疾病有不同程度的影响。手动分割既耗时又费力。本研究专注于开发一种基于深度学习的完整数据处理管道,用于基于 MRI 的脂肪分析,用于包括(1)数据增强和预处理(2)模型动物园(3)可视化仪表板和(4)校正工具的大型队列研究,以自动量化脂肪隔室 SAT 和 VAT。

方法

我们的样本包括来自 Geri-LABS 研究的 190 名健康的社区居住的老年人,平均年龄为 67.85±7.90 岁,BMI 为 23.75±3.65kg/m,132 名(69.5%)为女性,主要为华裔。采集了 3D 改良的 Dixon T1 加权梯度回波磁共振成像(MRI)。对残余全局聚合 3D U-Net(RGA-U-Net)和标准 3D U-Net 进行训练,以分割 SAT、VAT、浅和深皮下脂肪组织隔室(SSAT 和 DSAT)。在训练过程中,使用 26 名受试者的手动分割作为地面实况。进行数据增强、随机偏差、噪声和重像,将训练数据集的数量增加到 130 个。使用 Dice 和 Hausdorff 度量评估分割准确性。

结果

SSAT 的分割准确率为 0.92,DSAT 为 0.88,VAT 为 0.9。平均 Hausdorff 距离小于 5mm。自动化分割与所有 3 个脂肪隔室的地面实况显著相关(R>0.99,p<0.001)。Bland-Altman 分析显示,预测体积与±1.96SD 内的偏差。

结论

基于深度学习的全面 SSAT、DSAT 和 VAT 分析工具具有较高的准确性和可重复性,可在不到 10 秒的时间内提供全面的脂肪隔室组成分析和可视化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验