Suppr超能文献

微管蛋白C末端尾巴构象集合的分子决定因素

Molecular Determinants of Tubulin's C-Terminal Tail Conformational Ensemble.

作者信息

Wall Kathryn P, Pagratis Maria, Armstrong Geoffrey, Balsbaugh Jeremy L, Verbeke Eric, Pearson Chad G, Hough Loren E

机构信息

University of Colorado , Boulder, Colorado, United States.

University of Colorado , Anschutz Medical Campus, Colorado, United States.

出版信息

ACS Chem Biol. 2016 Nov 18;11(11):2981-2990. doi: 10.1021/acschembio.6b00507. Epub 2016 Sep 28.

Abstract

Tubulin is important for a wide variety of cellular processes including cell division, ciliogenesis, and intracellular trafficking. To perform these diverse functions, tubulin is regulated by post-translational modifications (PTM), primarily at the C-terminal tails of both the α- and β-tubulin heterodimer subunits. The tubulin C-terminal tails are disordered segments that are predicted to extend from the ordered tubulin body and may regulate both intrinsic properties of microtubules and the binding of microtubule associated proteins (MAP). It is not understood how either interactions with the ordered tubulin body or PTM affect tubulin's C-terminal tails. To probe these questions, we developed a method to isotopically label tubulin for C-terminal tail structural studies by NMR. The conformational changes of the tubulin tails as a result of both proximity to the ordered tubulin body and modification by mono- and polyglycine PTM were determined. The C-terminal tails of the tubulin dimer are fully disordered and, in contrast with prior simulation predictions, exhibit a propensity for β-sheet conformations. The C-terminal tails display significant chemical shift differences as compared to isolated peptides of the same sequence, indicating that the tubulin C-terminal tails interact with the ordered tubulin body. Although mono- and polyglycylation affect the chemical shift of adjacent residues, the conformation of the C-terminal tail appears insensitive to the length of polyglycine chains. Our studies provide important insights into how the essential disordered domains of tubulin function.

摘要

微管蛋白对于包括细胞分裂、纤毛发生和细胞内运输在内的多种细胞过程都很重要。为了执行这些多样的功能,微管蛋白受到翻译后修饰(PTM)的调控,主要是在α-和β-微管蛋白异二聚体亚基的C末端尾巴上。微管蛋白的C末端尾巴是无序片段,预计从有序的微管蛋白主体延伸出来,可能会调节微管的内在特性以及微管相关蛋白(MAP)的结合。目前尚不清楚与有序微管蛋白主体的相互作用或PTM是如何影响微管蛋白的C末端尾巴的。为了探究这些问题,我们开发了一种通过核磁共振对微管蛋白进行同位素标记以进行C末端尾巴结构研究的方法。确定了由于靠近有序微管蛋白主体以及单甘氨酸和多甘氨酸PTM修饰而导致的微管蛋白尾巴的构象变化。微管蛋白二聚体的C末端尾巴完全无序,与先前的模拟预测相反,呈现出β-折叠构象的倾向。与相同序列的分离肽相比,C末端尾巴显示出显著的化学位移差异,表明微管蛋白的C末端尾巴与有序微管蛋白主体相互作用。尽管单甘氨酸化和多甘氨酸化会影响相邻残基的化学位移,但C末端尾巴的构象似乎对多甘氨酸链的长度不敏感。我们的研究为微管蛋白的必需无序结构域如何发挥功能提供了重要见解。

相似文献

1
Molecular Determinants of Tubulin's C-Terminal Tail Conformational Ensemble.
ACS Chem Biol. 2016 Nov 18;11(11):2981-2990. doi: 10.1021/acschembio.6b00507. Epub 2016 Sep 28.
2
Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface.
Proteins. 2011 Oct;79(10):2968-82. doi: 10.1002/prot.23155. Epub 2011 Aug 26.
3
Modulating Microtubules: A Molecular Perspective on the Effects of Tail Modifications.
J Mol Biol. 2021 Jun 25;433(13):166988. doi: 10.1016/j.jmb.2021.166988. Epub 2021 Apr 16.
4
Conformational analysis of the carboxy-terminal tails of human beta-tubulin isotypes.
Biophys J. 2008 Mar 15;94(6):1971-82. doi: 10.1529/biophysj.107.115113. Epub 2007 Nov 9.
5
Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC).
J Biol Chem. 2015 Oct 30;290(44):26784-9. doi: 10.1074/jbc.M115.678854. Epub 2015 Aug 25.
6
C-Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties.
Biophys J. 2020 Dec 1;119(11):2219-2230. doi: 10.1016/j.bpj.2020.09.040. Epub 2020 Oct 31.
7
Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A.
J Biol Chem. 2019 Apr 19;294(16):6353-6363. doi: 10.1074/jbc.RA118.005765. Epub 2019 Feb 15.
8
Mobility and Core-Protein Binding Patterns of Disordered C-Terminal Tails in β-Tubulin Isotypes.
Biochemistry. 2017 Mar 28;56(12):1746-1756. doi: 10.1021/acs.biochem.6b00988. Epub 2017 Mar 17.
9
Intrinsically disordered tubulin tails: complex tuners of microtubule functions?
Semin Cell Dev Biol. 2015 Jan;37:11-9. doi: 10.1016/j.semcdb.2014.09.026. Epub 2014 Oct 13.
10
Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice.
Curr Biol. 2002 Feb 19;12(4):313-6. doi: 10.1016/s0960-9822(02)00651-6.

引用本文的文献

1
Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule.
PNAS Nexus. 2025 Jun 21;4(7):pgaf202. doi: 10.1093/pnasnexus/pgaf202. eCollection 2025 Jul.
3
TUBA4A downregulation as observed in ALS motor cortex causes ALS-related abnormalities in zebrafish.
Front Cell Neurosci. 2024 Feb 21;18:1340240. doi: 10.3389/fncel.2024.1340240. eCollection 2024.
4
Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance.
Rev Recent Clin Trials. 2024;19(3):176-188. doi: 10.2174/0115748871271420240213064251.
5
Glutamylation is a negative regulator of microtubule growth.
Mol Biol Cell. 2023 Jun 1;34(7):ar70. doi: 10.1091/mbc.E23-01-0030. Epub 2023 Apr 19.
6
Models versus pathogens: how conserved is the FtsZ in bacteria?
Biosci Rep. 2023 Feb 27;43(2). doi: 10.1042/BSR20221664.
7
Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing.
Dev Cell. 2022 Nov 7;57(21):2497-2513.e6. doi: 10.1016/j.devcel.2022.10.003.
10

本文引用的文献

1
Graded Control of Microtubule Severing by Tubulin Glutamylation.
Cell. 2016 Feb 25;164(5):911-21. doi: 10.1016/j.cell.2016.01.019. Epub 2016 Feb 11.
2
Visualizing microtubule structural transitions and interactions with associated proteins.
Curr Opin Struct Biol. 2016 Apr;37:90-6. doi: 10.1016/j.sbi.2015.12.009. Epub 2016 Jan 21.
3
Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity.
Structure. 2015 Dec 1;23(12):2267-2279. doi: 10.1016/j.str.2015.10.010. Epub 2015 Nov 19.
4
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.
Cell. 2015 Oct 22;163(3):734-45. doi: 10.1016/j.cell.2015.09.047. Epub 2015 Oct 8.
6
Phosphorylation-induced Conformational Ensemble Switching in an Intrinsically Disordered Cancer/Testis Antigen.
J Biol Chem. 2015 Oct 9;290(41):25090-102. doi: 10.1074/jbc.M115.658583. Epub 2015 Aug 4.
7
Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
Cell. 2015 Aug 13;162(4):849-59. doi: 10.1016/j.cell.2015.07.012. Epub 2015 Jul 30.
9
Multivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases.
Cell. 2015 May 21;161(5):1112-1123. doi: 10.1016/j.cell.2015.04.003. Epub 2015 May 7.
10
The motility of axonemal dynein is regulated by the tubulin code.
Biophys J. 2014 Dec 16;107(12):2872-2880. doi: 10.1016/j.bpj.2014.10.061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验