Suppr超能文献

纳米颗粒上的蛋白质吸附:使用计算机模拟进行模型开发

Protein adsorption on nanoparticles: model development using computer simulation.

作者信息

Shao Qing, Hall Carol K

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

J Phys Condens Matter. 2016 Oct 19;28(41):414019. doi: 10.1088/0953-8984/28/41/414019. Epub 2016 Aug 22.

Abstract

The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

摘要

蛋白质在纳米颗粒上的吸附会导致蛋白质冠层的形成,其组成决定了纳米颗粒如何影响其生物环境。我们试图通过开发模型来更好地理解冠层的形成,这些模型利用计算机模拟结果作为数据来描述蛋白质在纳米颗粒上的吸附。使用粗粒度蛋白质模型,进行非连续分子动力学模拟,以研究两种小蛋白质(色氨酸笼和WW结构域)在直径为10.0 nm的模型纳米颗粒上,在蛋白质浓度范围为0.5至5 mM时的吸附情况。所得的吸附等温线可以用朗缪尔、弗伦德利希、坦金和基斯列夫模型很好地描述,但不能用埃洛维奇、福勒-古根海姆和希尔-德布尔模型描述。我们还试图开发一个通用模型,该模型可以根据无量纲尺寸参数来描述不同直径纳米颗粒上的蛋白质吸附平衡。三种蛋白质(色氨酸笼、WW结构域和GB3)在四种纳米颗粒(直径 = 5.0、10.0、15.0和20.0 nm)上的模拟结果说明了开发纳米颗粒上蛋白质吸附通用模型所带来的希望和挑战。

相似文献

1
Protein adsorption on nanoparticles: model development using computer simulation.
J Phys Condens Matter. 2016 Oct 19;28(41):414019. doi: 10.1088/0953-8984/28/41/414019. Epub 2016 Aug 22.
3
Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles.
Int J Mol Sci. 2019 Jul 19;20(14):3539. doi: 10.3390/ijms20143539.
4
Understanding the Kinetics of Protein-Nanoparticle Corona Formation.
ACS Nano. 2016 Dec 27;10(12):10842-10850. doi: 10.1021/acsnano.6b04858. Epub 2016 Nov 16.
5
Computer simulation of the role of protein corona in cellular delivery of nanoparticles.
Biomaterials. 2014 Oct;35(30):8703-10. doi: 10.1016/j.biomaterials.2014.06.033. Epub 2014 Jul 5.
6
Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles.
Int J Biol Macromol. 2013 Jul;58:57-65. doi: 10.1016/j.ijbiomac.2013.03.037. Epub 2013 Mar 20.
7
Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles.
J Chem Phys. 2015 Dec 28;143(24):243138. doi: 10.1063/1.4936908.
8
Exploring Protein-Nanoparticle Interactions with Coarse-Grained Protein Folding Models.
Small. 2017 May;13(18). doi: 10.1002/smll.201603748. Epub 2017 Mar 7.
9
Adsorption on Ligand-Tethered Nanoparticles.
Int J Mol Sci. 2021 Aug 16;22(16):8810. doi: 10.3390/ijms22168810.

引用本文的文献

1
2
Multiscale modelling of biomolecular corona formation on metallic surfaces.
Beilstein J Nanotechnol. 2024 Feb 13;15:215-229. doi: 10.3762/bjnano.15.21. eCollection 2024.
3
Milk Protein Adsorption on Metallic Iron Surfaces.
Nanomaterials (Basel). 2023 Jun 14;13(12):1857. doi: 10.3390/nano13121857.
4
Nanoparticle-mediated cancer cell therapy: basic science to clinical applications.
Cancer Metastasis Rev. 2023 Sep;42(3):601-627. doi: 10.1007/s10555-023-10086-2. Epub 2023 Feb 24.
6
A hard-sphere model of protein corona formation on spherical and cylindrical nanoparticles.
Biophys J. 2021 Oct 19;120(20):4457-4471. doi: 10.1016/j.bpj.2021.09.002. Epub 2021 Sep 8.
7
9
Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery.
Front Mol Biosci. 2020 Nov 25;7:604770. doi: 10.3389/fmolb.2020.604770. eCollection 2020.
10
Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona.
Materials (Basel). 2020 Jul 10;13(14):3093. doi: 10.3390/ma13143093.

本文引用的文献

1
Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles.
J Chem Phys. 2015 Dec 28;143(24):243138. doi: 10.1063/1.4936908.
2
Gold Nanoparticles for In Vitro Diagnostics.
Chem Rev. 2015 Oct 14;115(19):10575-636. doi: 10.1021/acs.chemrev.5b00100. Epub 2015 Jun 26.
3
Protein corona of nanoparticles: distinct proteins regulate the cellular uptake.
Biomacromolecules. 2015 Apr 13;16(4):1311-21. doi: 10.1021/acs.biomac.5b00108. Epub 2015 Apr 3.
4
Competitive protein adsorption to soft polymeric layers: binary mixtures and comparison to theory.
J Phys Chem B. 2015 Feb 19;119(7):3250-8. doi: 10.1021/jp5119986. Epub 2015 Jan 30.
5
Computer simulation of the role of protein corona in cellular delivery of nanoparticles.
Biomaterials. 2014 Oct;35(30):8703-10. doi: 10.1016/j.biomaterials.2014.06.033. Epub 2014 Jul 5.
6
Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.
ACS Nano. 2014 Jan 28;8(1):503-13. doi: 10.1021/nn405019v. Epub 2014 Jan 3.
7
Computational and experimental characterizations of silver nanoparticle-apolipoprotein biocorona.
J Phys Chem B. 2013 Oct 31;117(43):13451-6. doi: 10.1021/jp4061158. Epub 2013 Oct 16.
8
Direct observation of a single nanoparticle-ubiquitin corona formation.
Nanoscale. 2013 Oct 7;5(19):9162-9. doi: 10.1039/c3nr02147e. Epub 2013 Aug 7.
9
Exhaustively sampling peptide adsorption with metadynamics.
Langmuir. 2013 Jun 25;29(25):7999-8009. doi: 10.1021/la4010664. Epub 2013 Jun 13.
10
Nanoparticles in drug delivery: past, present and future.
Adv Drug Deliv Rev. 2013 Jan;65(1):21-3. doi: 10.1016/j.addr.2012.04.010. Epub 2012 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验