Suppr超能文献

从单细胞基因表达数据确定基因表达调控的物理机制。

Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

作者信息

Ezer Daphne, Moignard Victoria, Göttgens Berthold, Adryan Boris

机构信息

Department of Genetics, Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.

Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS Comput Biol. 2016 Aug 23;12(8):e1005072. doi: 10.1371/journal.pcbi.1005072. eCollection 2016 Aug.

Abstract

Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

摘要

许多基因以爆发式表达,这可能导致细胞间的异质性。现在可以通过高通量单细胞基因表达分析(单细胞定量PCR和RNA测序)来测量这种异质性。这些实验方法产生基因表达分布,可用于估计基因表达爆发的动力学参数,即基因开启的速率、基因关闭的速率和转录速率。我们构建了一个完整的单细胞定量PCR数据分析流程,利用爆发式表达背后的数学原理开发更准确、更稳健的算法,以分析实验样本中异质性的来源,特别是一种根据细胞的爆发行为对细胞进行聚类的算法(爆发式表达聚类的模拟退火算法,SABEC)和一种用于比较不同细胞群体中爆发式表达动力学参数的统计工具(动力学参数变化估计,EPiK)。我们将这些方法应用于造血过程,包括一个新的单细胞数据集,其中参与血液分化最早分支点的转录因子被分别上调和下调。我们能够在看似同质的造血干细胞群体中识别出两个独特的亚群。此外,我们可以预测整个分化过程中控制18种关键造血转录因子表达水平的调控机制。因此,仅从高通量单细胞基因表达数据就能获得有关基因调控机制的详细信息,鉴于单细胞基因组学的迅速发展,这应该具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca74/4995004/5e9b97c8116d/pcbi.1005072.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验