Suppr超能文献

全球主要作物种植中氮损失与产量权衡的综合评估。

Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations.

机构信息

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland; Department of Environmental Sciences, University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland.

出版信息

Sci Total Environ. 2016 Dec 1;572:526-537. doi: 10.1016/j.scitotenv.2016.08.093. Epub 2016 Aug 24.

Abstract

Agricultural application of reactive nitrogen (N) for fertilization is a cause of massive negative environmental problems on a global scale. However, spatially explicit and crop-specific information on global N losses into the environment and knowledge of trade-offs between N losses and crop yields are largely lacking. We use a crop growth model, Python-based Environmental Policy Integrated Climate (PEPIC), to determine global N losses from three major food crops: maize, rice, and wheat. Simulated total N losses into the environment (including water and atmosphere) are 44TgNyr. Two thirds of these, or 29TgNyr, are losses to water alone. Rice accounts for the highest N losses, followed by wheat and maize. The N loss intensity (NLI), defined as N losses per unit of yield, is used to address trade-offs between N losses and crop yields. The NLI presents high variation among different countries, indicating diverse N losses to produce the same amount of yields. Simulations of mitigation scenarios indicate that redistributing global N inputs and improving N management could significantly abate N losses and at the same time even increase yields without any additional total N inputs.

摘要

农业应用活性氮(N)施肥是全球范围内产生大量负面环境问题的一个原因。然而,对于全球环境中 N 损失的空间具体和作物特异性信息以及 N 损失和作物产量之间的权衡关系的了解还很缺乏。我们使用作物生长模型,基于 Python 的环境政策综合气候模型(PEPIC),来确定三种主要粮食作物:玉米、水稻和小麦的全球 N 损失。模拟的环境中总 N 损失(包括水和大气)为 44TgNyr。其中三分之二,即 29TgNyr,仅损失到水中。水稻造成的 N 损失最高,其次是小麦和玉米。氮损失强度(NLI)定义为单位产量的 N 损失,用于解决 N 损失和作物产量之间的权衡关系。不同国家之间的 NLI 差异很大,表明生产相同产量的 N 损失也不同。缓解情景的模拟表明,重新分配全球 N 投入和改善 N 管理可以显著减少 N 损失,同时甚至在不增加总 N 投入的情况下增加产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验