Suppr超能文献

R2eGIN:用于准确预测聚(ADP - 核糖)聚合酶抑制剂的残差重构增强图同构网络

R2eGIN: Residual Reconstruction Enhanced Graph Isomorphism Network for Accurate Prediction of Poly (ADP-Ribose) Polymerase Inhibitors.

作者信息

Zonyfar Candra, Njimbouom Soualihou Ngnamsie, Mosalla Sophia, Kim Jeong-Dong

机构信息

Department of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea.

Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea.

出版信息

Bioinform Biol Insights. 2025 Aug 29;19:11779322251366087. doi: 10.1177/11779322251366087. eCollection 2025.

Abstract

An advanced graph neural network (GNN) is of great promise to facilitate predicting Poly ADPribose polymerase inhibitors (PARPi). Recent studies design models by leveraging graph representations and molecular descriptor representations, unfortunately, still face challenges in comprehensively capturing spatial relationships and contextual information between atoms. Moreover, combining molecular descriptors with graph representations may introduce information redundancy or lead to the loss of intrinsic molecular structures. To this end, we proposed a novel Residual Reconstruction Enhanced Graph Isomorphism Network (R2eGIN) learning model. Specifically, we first designed a residual GIN to learn molecular representations, reduced the impact of vanishing gradients, and enabled the model to capture long-range dependencies. Then, the reconstruction block, by predicting adjacency matrices and node features, was adopted to reconstruct the input graph. To prove the effectiveness of the proposed model, extensive experiments were conducted on 4 data sets of PARPi and compared with 7 existing models. Our evaluation of R2eGIN, conducted using 4 PARPi data sets, shows that the proposed model is comparable to or even outperforms other state-of-the-art models for PARPi prediction. Furthermore, R2eGIN can revolutionize the drug repurposing process through a substantial reduction in the time and costs commonly encountered in traditional drug development methods.

摘要

先进的图神经网络(GNN)在促进聚ADP核糖聚合酶抑制剂(PARPi)预测方面具有巨大潜力。最近的研究通过利用图表示和分子描述符表示来设计模型,不幸的是,在全面捕捉原子之间的空间关系和上下文信息方面仍面临挑战。此外,将分子描述符与图表示相结合可能会引入信息冗余或导致内在分子结构的丢失。为此,我们提出了一种新颖的残差重建增强图同构网络(R2eGIN)学习模型。具体来说,我们首先设计了一个残差GIN来学习分子表示,减少梯度消失的影响,并使模型能够捕捉长程依赖性。然后,采用重建块通过预测邻接矩阵和节点特征来重建输入图。为了证明所提出模型的有效性,我们在4个PARPi数据集上进行了广泛的实验,并与7个现有模型进行了比较。我们使用4个PARPi数据集对R2eGIN进行的评估表明,所提出的模型在PARPi预测方面与其他现有最先进模型相当甚至更优。此外,R2eGIN可以通过大幅减少传统药物开发方法中常见的时间和成本,彻底改变药物重新利用的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad0c/12397607/cd287140b44d/10.1177_11779322251366087-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验