文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

作者信息

Sun Xiaoxiao, Dalpiaz David, Wu Di, S Liu Jun, Zhong Wenxuan, Ma Ping

机构信息

Department of Statistics, University of Georgia, 101 Cedar Street, Athens, 30602, USA.

Department of Statistics, University of Illinois at Urbana-Champaign, 725 South Wright Street, Champaign, 61820, USA.

出版信息

BMC Bioinformatics. 2016 Aug 26;17(1):324. doi: 10.1186/s12859-016-1180-9.


DOI:10.1186/s12859-016-1180-9
PMID:27565575
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5002174/
Abstract

BACKGROUND: Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. RESULTS: Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. CONCLUSIONS: The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/205c0ce8d2d6/12859_2016_1180_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/230c7b10c28b/12859_2016_1180_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/e249183f50a0/12859_2016_1180_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/7651d8d1c330/12859_2016_1180_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/5102145aaffd/12859_2016_1180_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/a8e5d3d8dfc2/12859_2016_1180_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/00b76d7aa30b/12859_2016_1180_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/205c0ce8d2d6/12859_2016_1180_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/230c7b10c28b/12859_2016_1180_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/e249183f50a0/12859_2016_1180_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/7651d8d1c330/12859_2016_1180_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/5102145aaffd/12859_2016_1180_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/a8e5d3d8dfc2/12859_2016_1180_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/00b76d7aa30b/12859_2016_1180_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2337/5002174/205c0ce8d2d6/12859_2016_1180_Fig7_HTML.jpg

相似文献

[1]
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

BMC Bioinformatics. 2016-8-26

[2]
Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.

Brief Bioinform. 2015-6-24

[3]
NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.

BMC Bioinformatics. 2016-9-13

[4]
Detecting differentially expressed genes by smoothing effect of gene length on variance estimation.

J Bioinform Comput Biol. 2015-12

[5]
Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data.

BMC Genomics. 2017-5-25

[6]
Marginal likelihood estimation of negative binomial parameters with applications to RNA-seq data.

Biostatistics. 2017-10-1

[7]
Variance component score test for time-course gene set analysis of longitudinal RNA-seq data.

Biostatistics. 2017-10-1

[8]
Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.

RNA. 2017-6

[9]
A two-step integrated approach to detect differentially expressed genes in RNA-Seq data.

J Bioinform Comput Biol. 2016-12

[10]
Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation.

Bioinformatics. 2014-6-15

引用本文的文献

[1]
Model-to-crop conserved NUE Regulons enhance machine learning predictions of nitrogen use efficiency.

Plant Cell. 2025-5-9

[2]
A Survey of Statistical Methods for Microbiome Data Analysis.

Front Appl Math Stat. 2022

[3]
Multiomics Network Medicine Approaches to Precision Medicine and Therapeutics in Cardiovascular Diseases.

Arterioscler Thromb Vasc Biol. 2023-4

[4]
New genomic resources and comparative analyses reveal differences in floral gene expression in selfing and outcrossing Collinsia sister species.

G3 (Bethesda). 2021-8-7

[5]
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.

Genes (Basel). 2021-2-27

[6]
Identification and characterization of dynamically regulated hepatitis-related genes in a concanavalin A-induced liver injury model.

Aging (Albany NY). 2020-11-18

[7]
Negative Binomial mixed models estimated with the maximum likelihood method can be used for longitudinal RNAseq data.

Brief Bioinform. 2021-7-20

[8]
State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia.

Cancer Res. 2020-5-15

[9]
TimeMeter assesses temporal gene expression similarity and identifies differentially progressing genes.

Nucleic Acids Res. 2020-5-21

[10]
Temporal dynamics in meta longitudinal RNA-Seq data.

Sci Rep. 2019-1-24

本文引用的文献

[1]
Polyester: simulating RNA-seq datasets with differential transcript expression.

Bioinformatics. 2015-9-1

[2]
Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation.

Bioinformatics. 2014-6-15

[3]
Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series.

Bioinformatics. 2014-9-15

[4]
Statistical Modeling of RNA-Seq Data.

Stat Sci. 2011-2

[5]
Time series expression analyses using RNA-seq: a statistical approach.

Biomed Res Int. 2013-3-24

[6]
Detecting differential usage of exons from RNA-seq data.

Genome Res. 2012-6-21

[7]
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.

Nat Protoc. 2012-3-1

[8]
The developmental transcriptome of Drosophila melanogaster.

Nature. 2010-12-22

[9]
Differential expression analysis for sequence count data.

Genome Biol. 2010-10-27

[10]
A scaling normalization method for differential expression analysis of RNA-seq data.

Genome Biol. 2010-3-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索