Department of Computer Science and Statistics, Jeju National University,, Jeju City, Jeju Do, S., 690-756, Korea.
United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA.
Sci Rep. 2019 Jan 24;9(1):763. doi: 10.1038/s41598-018-37397-7.
Identification of differentially expressed genes has been a high priority task of downstream analyses to further advances in biomedical research. Investigators have been faced with an array of issues in dealing with more complicated experiments and metadata, including batch effects, normalization, temporal dynamics (temporally differential expression), and isoform diversity (isoform-level quantification and differential splicing events). To date, there are currently no standard approaches to precisely and efficiently analyze these moderate or large-scale experimental designs, especially with combined metadata. In this report, we propose comprehensive analytical pipelines to precisely characterize temporal dynamics in differential expression of genes and other genomic features, i.e., the variability of transcripts, isoforms and exons, by controlling batch effects and other nuisance factors that could have significant confounding effects on the main effects of interest in comparative models and may result in misleading interpretations.
差异表达基因的鉴定一直是生物医学研究进展的下游分析的重中之重。研究人员在处理更复杂的实验和元数据时面临着一系列问题,包括批次效应、归一化、时间动态(时间差异表达)和异构体多样性(异构体水平定量和差异剪接事件)。迄今为止,还没有精确、高效地分析这些中等或大规模实验设计的标准方法,尤其是结合元数据时。在本报告中,我们提出了全面的分析流程,通过控制批次效应和其他可能对比较模型中感兴趣的主要效应产生重大干扰的混杂因素,精确地描述基因和其他基因组特征(即转录物、异构体和外显子的可变性)的时间动态差异表达。
Sci Rep. 2019-1-24
J Biomed Inform. 2020-3
Genome Biol. 2017-6-27
BMC Genomics. 2020-3-30
Hum Genomics. 2014-1-21
Nucleic Acids Res. 2020-9-4
Methods Mol Biol. 2021
Genes (Basel). 2022-2-22
Genes (Basel). 2021-2-27
Genome Biol. 2018-4-12
J Integr Plant Biol. 2018-5-22
Brief Bioinform. 2019-1-18
Bioinformatics. 2017-8-15
Biostatistics. 2017-4-1
BMC Bioinformatics. 2016-8-26