文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

元纵向 RNA-Seq 数据中的时间动态。

Temporal dynamics in meta longitudinal RNA-Seq data.

机构信息

Department of Computer Science and Statistics, Jeju National University,, Jeju City, Jeju Do, S., 690-756, Korea.

United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA.

出版信息

Sci Rep. 2019 Jan 24;9(1):763. doi: 10.1038/s41598-018-37397-7.


DOI:10.1038/s41598-018-37397-7
PMID:30679697
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6345883/
Abstract

Identification of differentially expressed genes has been a high priority task of downstream analyses to further advances in biomedical research. Investigators have been faced with an array of issues in dealing with more complicated experiments and metadata, including batch effects, normalization, temporal dynamics (temporally differential expression), and isoform diversity (isoform-level quantification and differential splicing events). To date, there are currently no standard approaches to precisely and efficiently analyze these moderate or large-scale experimental designs, especially with combined metadata. In this report, we propose comprehensive analytical pipelines to precisely characterize temporal dynamics in differential expression of genes and other genomic features, i.e., the variability of transcripts, isoforms and exons, by controlling batch effects and other nuisance factors that could have significant confounding effects on the main effects of interest in comparative models and may result in misleading interpretations.

摘要

差异表达基因的鉴定一直是生物医学研究进展的下游分析的重中之重。研究人员在处理更复杂的实验和元数据时面临着一系列问题,包括批次效应、归一化、时间动态(时间差异表达)和异构体多样性(异构体水平定量和差异剪接事件)。迄今为止,还没有精确、高效地分析这些中等或大规模实验设计的标准方法,尤其是结合元数据时。在本报告中,我们提出了全面的分析流程,通过控制批次效应和其他可能对比较模型中感兴趣的主要效应产生重大干扰的混杂因素,精确地描述基因和其他基因组特征(即转录物、异构体和外显子的可变性)的时间动态差异表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/c5e1352cc677/41598_2018_37397_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/994dc8fd9a7c/41598_2018_37397_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/ffb9c751afce/41598_2018_37397_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/83803699eac0/41598_2018_37397_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/0b82ad6479cc/41598_2018_37397_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/843061043133/41598_2018_37397_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/c5e1352cc677/41598_2018_37397_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/994dc8fd9a7c/41598_2018_37397_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/ffb9c751afce/41598_2018_37397_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/83803699eac0/41598_2018_37397_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/0b82ad6479cc/41598_2018_37397_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/843061043133/41598_2018_37397_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba8/6345883/c5e1352cc677/41598_2018_37397_Fig6_HTML.jpg

相似文献

[1]
Temporal dynamics in meta longitudinal RNA-Seq data.

Sci Rep. 2019-1-24

[2]
Differential splicing analysis based on isoforms expression with NBSplice.

J Biomed Inform. 2020-3

[3]
BRIE: transcriptome-wide splicing quantification in single cells.

Genome Biol. 2017-6-27

[4]
A large-scale comparative study of isoform expressions measured on four platforms.

BMC Genomics. 2020-3-30

[5]
A survey of software for genome-wide discovery of differential splicing in RNA-Seq data.

Hum Genomics. 2014-1-21

[6]
A model for isoform-level differential expression analysis using RNA-seq data without pre-specifying isoform structure.

PLoS One. 2022

[7]
A comprehensive rat transcriptome built from large scale RNA-seq-based annotation.

Nucleic Acids Res. 2020-9-4

[8]
Identifying differentially spliced genes from two groups of RNA-seq samples.

Gene. 2012-12-8

[9]
RNA-Seq Data Analysis in Galaxy.

Methods Mol Biol. 2021

[10]
Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms.

Brief Bioinform. 2017-3-1

引用本文的文献

[1]
Wise Roles and Future Visionary Endeavors of Current Emperor: Advancing Dynamic Methods for Longitudinal Microbiome Meta-Omics Data in Personalized and Precision Medicine.

Adv Sci (Weinh). 2024-12

[2]
Large-Scale Meta-Longitudinal Microbiome Data with a Known Batch Factor.

Genes (Basel). 2022-2-22

[3]
TimesVector-Web: A Web Service for Analysing Time Course Transcriptome Data with Multiple Conditions.

Genes (Basel). 2021-12-28

[4]
Challenges, Strategies, and Perspectives for Reference-Independent Longitudinal Multi-Omic Microbiome Studies.

Front Genet. 2021-6-14

[5]
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.

Genes (Basel). 2021-2-27

本文引用的文献

[1]
Gene-level differential analysis at transcript-level resolution.

Genome Biol. 2018-4-12

[2]
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.

Nat Biotechnol. 2018-4-2

[3]
Transcriptional and temporal response of Populus stems to gravi-stimulation.

J Integr Plant Biol. 2018-5-22

[4]
Comparative analysis of differential gene expression tools for RNA sequencing time course data.

Brief Bioinform. 2019-1-18

[5]
Removal of batch effects using distribution-matching residual networks.

Bioinformatics. 2017-8-15

[6]
Selection of internal reference genes for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis in the rumen epithelium.

PLoS One. 2017-2-24

[7]
Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches.

Methods Mol Biol. 2017

[8]
Letter to the Editor response: Nygaard et al.

Biostatistics. 2017-4-1

[9]
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

BMC Bioinformatics. 2016-8-26

[10]
Natural Cubic Spline Regression Modeling Followed by Dynamic Network Reconstruction for the Identification of Radiation-Sensitivity Gene Association Networks from Time-Course Transcriptome Data.

PLoS One. 2016-8-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索