Kriegeskorte Nikolaus, Diedrichsen Jörn
Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
Brain and Mind Institute, Department of Computer Science and Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada.
Philos Trans R Soc Lond B Biol Sci. 2016 Oct 5;371(1705). doi: 10.1098/rstb.2016.0278.
High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
高分辨率功能成像正在为动物和人类的大脑活动提供越来越丰富的测量数据。一个主要挑战是利用这些数据来深入了解大脑的计算机制。第一步是定义能够执行相关行为任务的候选脑计算模型(BCM)。然后,我们希望推断出哪个候选BCM最能解释所测量的大脑活动数据。在这里,我们描述了一种方法,该方法通过测量模型(MM)对每个BCM进行补充,该测量模型模拟大脑活动测量反映神经元活动的方式(例如功能磁共振成像(fMRI)体素中的局部平均或阵列记录中的稀疏采样)。由此产生的生成模型(BCM-MM)产生模拟测量值。为了避免必须拟合MM来预测大脑活动数据的每个单独测量通道,我们在汇总统计层面比较测量数据和预测数据。我们描述了这种方法的一种新颖的具体实现,称为带MM的概率表征相似性分析(pRSA),它使用表征差异矩阵(RDM)作为汇总统计量。我们通过基于用于视觉对象识别的深度卷积神经网络对fMRI测量(局部平均体素)进行模拟来验证该方法。结果表明,测量对活动模式的采样方式强烈影响表观表征差异。然而,测量过程的建模可以解释这些影响,并且即使在大量噪声下,不同的BCM仍然是可区分的。pRSA方法使我们能够对BCM集进行贝叶斯推断,并在每种情况下识别数据生成模型。本文是主题为“解读BOLD:认知神经科学与细胞神经科学之间的对话”的特刊的一部分。