Department of Artificial Intelligence and Human Health, Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
Department of Psychiatry, Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2317881121. doi: 10.1073/pnas.2317881121. Epub 2024 Oct 7.
A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here, we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis, an extension of representational similarity analysis that uses a family of geotopological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.
神经科学的一个核心问题是如何描述感知和认知内容的大脑表示。理想的描述应该具有稳健性,可以区分不同的功能区域,不受个体大脑的噪声和特殊性的影响,而这些特殊性与计算差异不对应。以前的研究通过其表示几何形状来描述大脑表示,该几何形状由表示相似性矩阵 (RDM) 定义,这是一个从单个神经元(或反应通道)的作用中抽象出来并描述刺激可区分性的摘要统计量。在这里,我们探索了进一步的抽象:从几何形状到大脑表示的拓扑结构。我们提出了拓扑表示相似性分析,这是表示相似性分析的扩展,它使用了一系列地理拓扑摘要统计量,将 RDM 推广为描述拓扑结构的特征,同时淡化了几何形状的作用。我们使用模拟和功能磁共振成像 (fMRI) 数据,根据模型选择的灵敏度和特异性来评估这些统计量的家族。在模拟中,真实情况是神经网络模型中的数据生成层表示,模型是相同的,而不同模型实例中的其他层(从不同的随机种子训练)。在 fMRI 中,真实情况是一个视觉区域,而模型是相同的,在不同的受试者中测量的其他区域。结果表明,对群体编码的拓扑敏感特征描述具有稳健性,可以抵抗噪声和个体间的可变性,并且对不同神经网络层和大脑区域的独特表示特征具有出色的敏感性。