Suppr超能文献

基于心理意象的脑机接口控制的用户训练进展:心理和认知因素及其神经关联

Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates.

作者信息

Jeunet C, N'Kaoua B, Lotte F

机构信息

Laboratoire Handicap Activité Cognition Santé, University of Bordeaux, Bordeaux, France; Project-Team Potioc/LaBRI, Inria Bordeaux Sud-Ouest, Bordeaux, France.

Laboratoire Handicap Activité Cognition Santé, University of Bordeaux, Bordeaux, France.

出版信息

Prog Brain Res. 2016;228:3-35. doi: 10.1016/bs.pbr.2016.04.002. Epub 2016 Jun 10.

Abstract

While being very promising for a wide range of applications, mental-imagery-based brain-computer interfaces (MI-BCIs) remain barely used outside laboratories, notably due to the difficulties users encounter when attempting to control them. Indeed, 10-30% of users are unable to control MI-BCIs (so-called BCI illiteracy) while only a small proportion reach acceptable control abilities. This huge interuser variability has led the community to investigate potential predictors of performance related to users' personality and cognitive profile. Based on a literature review, we propose a classification of these MI-BCI performance predictors into three categories representing high-level cognitive concepts: (1) users' relationship with the technology (including the notions of computer anxiety and sense of agency), (2) attention, and (3) spatial abilities. We detail these concepts and their neural correlates in order to better understand their relationship with MI-BCI user-training. Consequently, we propose, by way of future prospects, some guidelines to improve MI-BCI user-training.

摘要

虽然基于心理意象的脑机接口(MI-BCI)在广泛的应用中极具前景,但在实验室之外却很少被使用,这主要是因为用户在尝试控制它们时会遇到困难。事实上,10%至30%的用户无法控制MI-BCI(即所谓的脑机接口文盲),而只有一小部分用户能达到可接受的控制能力。这种巨大的用户间差异促使该领域研究与用户个性和认知特征相关的性能潜在预测因素。基于文献综述,我们将这些MI-BCI性能预测因素分为三类,分别代表高级认知概念:(1)用户与技术的关系(包括计算机焦虑和能动感等概念),(2)注意力,以及(3)空间能力。我们详细阐述这些概念及其神经关联,以便更好地理解它们与MI-BCI用户训练的关系。因此,作为未来展望,我们提出了一些改进MI-BCI用户训练的指导方针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验