Suppr超能文献

低δ脑电图相位特征在重建中心向外伸展手部运动中的优势

The Advantage of Low-Delta Electroencephalogram Phase Feature for Reconstructing the Center-Out Reaching Hand Movements.

作者信息

Zeng Hong, Sun Yuanzi, Xu Guozheng, Wu Changcheng, Song Aiguo, Xu Baoguo, Li Huijun, Hu Cong

机构信息

Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China.

Mechatronics and Haptics Interfaces Laboratory, Department of Mechanical Engineering, Rice University, Houston, TX, United States.

出版信息

Front Neurosci. 2019 May 15;13:480. doi: 10.3389/fnins.2019.00480. eCollection 2019.

Abstract

It is an emerging frontier of research on the use of neural signals for prosthesis control, in order to restore lost function to amputees and patients after spinal cord injury. Compared to the invasive neural signal based brain-machine interface (BMI), a non-invasive alternative, i.e., the electroencephalogram (EEG)-based BMI would be more widely accepted by the patients above. Ideally, a real-time continuous neuroprosthestic control is required for practical applications. However, conventional EEG-based BMIs mainly deal with the discrete brain activity classification. Until recently, the literature has reported several attempts for achieving the real-time continuous control by reconstructing the continuous movement parameters (e.g., speed, position, etc.) from the EEG recordings, and the low-frequency band EEG is consistently reported to encode the continuous motor control information. Previous studies with executed movement tasks have extensively relied on the amplitude representation of such slow oscillations of EEG signals for building models to decode kinematic parameters. Inspired by the recent successes of instantaneous phase of low-frequency invasive brain signals in the motor control and sensory processing domains, this study examines the extension of such a slow-oscillation phase representation to the reconstructing two-dimensional hand movements, with the non-invasive EEG signals for the first time. The data for analysis are collected on five healthy subjects performing 2D hand center-out reaching along four directions in two sessions. On representative channels over the cortices encoding the execution information of reaching movements, we show that the low-delta EEG phase representation is characterized by higher signal-to-noise ratio and stronger modulation by the movement tasks, compared to the low-delta EEG amplitude representation. Furthermore, we have tested the low-delta EEG phase representation with two commonly used linear decoding models. The results demonstrate that the low-delta EEG phase based decoders lead to superior performance for 2D executed movement reconstruction to its amplitude based counterparts, as well as the other-frequency band amplitude and power based features. Thus, our study contributes to improve the movement reconstruction from EEG by introducing a new feature set based on the low-delta EEG phase patterns, and demonstrates its potential for continuous fine motion control of neuroprostheses.

摘要

利用神经信号进行假肢控制是一个新兴的前沿研究领域,旨在恢复截肢者和脊髓损伤患者丧失的功能。与基于侵入性神经信号的脑机接口(BMI)相比,非侵入性的替代方案,即基于脑电图(EEG)的BMI更容易被上述患者接受。理想情况下,实际应用需要实时连续的神经假肢控制。然而,传统的基于EEG的BMI主要处理离散的大脑活动分类。直到最近,文献报道了一些通过从EEG记录中重建连续运动参数(如速度、位置等)来实现实时连续控制的尝试,并且一直报道低频带EEG编码连续运动控制信息。先前执行运动任务的研究广泛依赖于EEG信号这种慢振荡的幅度表示来构建模型以解码运动学参数。受低频侵入性脑信号的瞬时相位在运动控制和感觉处理领域最近取得成功的启发,本研究首次使用非侵入性EEG信号研究将这种慢振荡相位表示扩展到二维手部运动的重建。分析数据是在五名健康受试者身上收集的,他们在两个阶段中沿着四个方向进行二维手部中心外伸展。在编码伸展运动执行信息的皮质上的代表性通道上,我们表明,与低δ波EEG幅度表示相比,低δ波EEG相位表示具有更高的信噪比和更强的运动任务调制。此外,我们用两种常用的线性解码模型测试了低δ波EEG相位表示。结果表明,基于低δ波EEG相位的解码器在二维执行运动重建方面比基于幅度的对应解码器以及基于其他频段幅度和功率的特征具有更好的性能。因此,我们的研究通过引入基于低δ波EEG相位模式的新特征集,有助于改善从EEG进行的运动重建,并证明了其在神经假肢连续精细运动控制中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/244a/6530632/03279d090ad8/fnins-13-00480-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验