Darvishi Hamidreza, Mohammadi Ahmadreza, Maghami Mohammad Hossein, Sadeghi Meysam, Sawan Mohamad
Department of Cognitive Psychology, Institute for Cognitive Science Studies (ICSS), Tehran 16583-44575, Iran.
Research Laboratory for Integrated Circuits, Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran.
Bioengineering (Basel). 2025 Jun 4;12(6):614. doi: 10.3390/bioengineering12060614.
Brain-computer interfaces (BCIs) translate electroencephalography (EEG) signals into control commands, offering potential solutions for motor-impaired individuals. While traditional BCI studies often focus solely on amplitude variations or inter-channel connectivity, movement-related brain activity is inherently dynamic, involving interactions across regions and frequency bands. We propose that combining amplitude-based (filter bank common spatial patterns, FBCSP) and phase-based connectivity features (phase-locking value, PLV) improves decoding accuracy. EEG signals from ten healthy subjects were recorded during arm movements, with electromyography (EMG) as ground truth. After preprocessing (resampling, normalization, bandpass filtering), FBCSP and multi-lag PLV features were fused, and the ReliefF algorithm selected the most informative subset. A feedforward neural network achieved average metrics of: Pearson correlation 0.829 ± 0.077, R-squared value 0.675 ± 0.126, and root mean square error (RMSE) 0.579 ± 0.098 in predicting EMG amplitudes indicative of arm movement angles. Analysis highlighted contributions from both FBCSP and PLV, particularly in the 4-8 Hz and 24-28 Hz bands. This fusion approach, augmented by data-driven feature selection, significantly enhances movement decoding accuracy, advancing robust neuroprosthetic control systems.
脑机接口(BCIs)将脑电图(EEG)信号转换为控制命令,为运动功能受损的个体提供了潜在的解决方案。虽然传统的脑机接口研究通常只关注幅度变化或通道间的连通性,但与运动相关的大脑活动本质上是动态的,涉及不同区域和频段之间的相互作用。我们提出,将基于幅度的特征(滤波器组公共空间模式,FBCSP)和基于相位的连通性特征(锁相值,PLV)相结合可以提高解码精度。在手臂运动期间记录了10名健康受试者的脑电图信号,并以肌电图(EMG)作为真实对照。经过预处理(重采样、归一化、带通滤波)后,将FBCSP和多延迟PLV特征进行融合,然后使用ReliefF算法选择信息量最大的子集。在前馈神经网络预测指示手臂运动角度的肌电图幅度时,得到的平均指标为:皮尔逊相关系数0.829±0.077,决定系数0.675±0.126,均方根误差(RMSE)0.579±0.098。分析突出了FBCSP和PLV的贡献,特别是在4-8Hz和24-28Hz频段。这种融合方法通过数据驱动的特征选择得到增强,显著提高了运动解码精度,推动了强大的神经假体控制系统的发展。