Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092, Zürich, Switzerland.
Drug Formulation & Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093, Zürich, Switzerland.
Adv Healthc Mater. 2016 Oct;5(20):2698-2706. doi: 10.1002/adhm.201600725. Epub 2016 Sep 5.
Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn Fe O ) nanoparticles coated in situ with a nanothin SiO layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn Fe O nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system.
大规模且可重现的纳米材料合成对于成功转化为临床应用至关重要。火焰气溶胶技术因其能够制造高纯度材料(例如导光纤维)的能力已得到证实,其产量高达公斤/小时,因此被用于制备高度磁性、非化学计量比的 Zn 铁氧体(ZnFe2O4)纳米粒子,并在原位包覆纳米级 SiO 层。本文重点研究了其作为磁性多功能治疗剂的适用性,分析了其在磁共振成像(MRI)中的 T2 对比增强能力及其磁热疗性能。通过控制初级粒径在 5 至 35nm 之间,评估了其对磁性、MRI 弛豫率和磁热性能的影响。最重要的是,在火焰前驱体溶液中添加 Zn 有助于尖晶石 Zn 铁氧体晶体的生长,这些晶体表现出比通常在火焰中制备的氧化铁更好的磁性。这些特性导致了强 MRI T2 对比剂,如在 4.7T 小动物 MRI 扫描仪上所示,并导致在交变磁场中更有效的加热。此外,通过将 ZnFe2O4 纳米粒子悬浮液注入猪肉组织中,可以在临床相关浓度下获得 MR 图像。此外,纳米级 SiO 壳有利于与聚合物的功能化,从而提高治疗系统的生物相容性。
Adv Healthc Mater. 2016-9-5
Adv Colloid Interface Sci. 2019-1-23
Contrast Media Mol Imaging. 2016-11
J Colloid Interface Sci. 2019-4-30
Colloids Surf B Biointerfaces. 2015-12-1
Adv Healthc Mater. 2018-8-8
Nanoscale Adv. 2025-7-16
Chem Mater. 2025-5-20
ACS Biomater Sci Eng. 2023-7-10
ACS Appl Mater Interfaces. 2022-5-18