Department of Pharmacy, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.
ACS Nano. 2024 Jun 11;18(23):15284-15302. doi: 10.1021/acsnano.4c04685. Epub 2024 May 30.
Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval. Therefore, we implemented a risk-based pharmaceutical quality by design (QbD) approach for SPION production using flame spray pyrolysis (FSP), a scalable technique with excellent batch-to-batch consistency. A design of experiments method enabled precise size control during manufacturing. Subsequent modeling linked the SPION size (6-30 nm) and composition to intrinsic loss power (ILP), a measure of hyperthermia performance. FSP successfully fine-tuned the SPION composition with dopants (Zn, Mn, Mg), at various concentrations. Hyperthermia performance showed a strong nonlinear relationship with SPION size and composition. Moreover, the ILP demonstrated a stronger correlation to coercivity and remanence than to the saturation magnetization of SPIONs. The optimal operating space identified the midsized (15-18 nm) MnFeO as the most promising nanoparticle for hyperthermia. The production of these nanoparticles on a pilot scale showed the feasibility of large-scale manufacturing, and cytotoxicity investigations in multiple cell lines confirmed their biocompatibility. o hyperthermia studies with Caco-2 cells revealed that MnFeO nanoparticles induced 80% greater cell death than undoped SPIONs. The systematic QbD approach developed here incorporates process robustness, scalability, and predictability, thus, supporting the clinical translation of high-performance SPIONs for magnetic hyperthermia.
磁热疗具有重要的治疗潜力,但临床应用面临挑战。其中一个障碍是大规模合成用于诱导热疗的高质量超顺磁氧化铁纳米粒子 (SPIONs)。稳健和可扩展的制造将确保控制 SPIONs 的关键质量属性,并促进临床转化和监管批准。因此,我们采用基于风险的药物质量源于设计 (QbD) 方法,使用火焰喷雾热解法 (FSP) 生产 SPION,这是一种具有出色批次间一致性的可扩展技术。实验设计方法可在制造过程中实现精确的尺寸控制。随后的建模将 SPION 的尺寸 (6-30nm) 和组成与内在损耗功率 (ILP) 联系起来,ILP 是衡量热疗性能的指标。FSP 成功地用掺杂剂 (Zn、Mn、Mg) 对 SPION 进行了微调,浓度不同。热疗性能与 SPION 尺寸和组成呈强非线性关系。此外,ILP 与矫顽力和剩余磁化强度的相关性强于与 SPION 饱和磁化强度的相关性。优化的操作空间确定了中尺寸 (15-18nm) 的 MnFeO 是最有前途的热疗用纳米粒子。在中试规模上生产这些纳米粒子表明了大规模制造的可行性,并且在多种细胞系中的细胞毒性研究证实了它们的生物相容性。在 Caco-2 细胞中的热疗研究表明,MnFeO 纳米粒子诱导的细胞死亡比未掺杂的 SPION 高 80%。这里开发的系统 QbD 方法结合了过程稳健性、可扩展性和可预测性,从而支持高性能 SPION 用于磁热疗的临床转化。