Grenoble Alpes University , Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, Grenoble 38041 Cedex 9, France.
Platform Intravital Microscopy, France Life Imaging, Grenoble Alpes University , INSERM U1205, 17 rue des Martyrs, 38054 Grenoble, France.
ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25051-9. doi: 10.1021/acsami.6b06446. Epub 2016 Sep 16.
A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.
已设计出一种基于透明质酸 (HA) 的细胞外基质 (ECM) 平台,其具有独立可调的刚性和细胞黏附肽 (RGD,精氨酸-甘氨酸-天冬氨酸) 的密度,可模拟大脑基质的关键生化和机械特征。我们在此展示了它在阐明 ECM 对神经祖细胞行为和神经突生长的调节中的效用。通过双光子显微镜对 3-D 中的神经突生长进行的分析在这些水凝胶的发展中得出了几个重要结果。首先,神经突能够深入延伸到这些柔软的基于 HA 的基质中,即使在没有细胞黏附配体的情况下,这进一步证实了 HA 水凝胶在中枢神经系统 (CNS) 再生中的潜力。其次,在储能模量为 400 Pa 和 800 Pa 的水凝胶之间,海马神经祖细胞的行为明显不同。我们观察到在最柔软的水凝胶(G'=400 Pa)中,神经突的生长和密度增加。有趣的是,在经过 RGD 配体功能化的水凝胶表面播种的细胞,其神经突生长表现出与配体密度的最佳关系。令人惊讶的是,神经突优先在凝胶中沿垂直方向生长,表明生长是由水凝胶结构引导的。这项工作可能为开发水凝胶以促进成年大脑中的神经元再生提供设计原则。