Suppr超能文献

骨的超分子结构:X 射线散射分析与横向结构建模。

The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling.

机构信息

Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.

Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children's Hospital Boston, Boston, MA 02115, USA.

出版信息

Acta Crystallogr D Struct Biol. 2016 Sep;72(Pt 9):986-96. doi: 10.1107/S2059798316011864. Epub 2016 Aug 18.

Abstract

The evolution of vertebrates required a key development in supramolecular evolution: internally mineralized collagen fibrils. In bone, collagen molecules and mineral crystals form a nanocomposite material comparable to cast iron in tensile strength, but several times lighter and more flexible. Current understanding of the internal nanoscale structure of collagen fibrils, derived from studies of rat tail tendon (RTT), does not explain how nucleation and growth of mineral crystals can occur inside a collagen fibril. Experimental obstacles encountered in studying bone have prevented a solution to this problem for several decades. This report presents a lateral packing model for collagen molecules in bone fibrils, based on the unprecedented observation of multiple resolved equatorial reflections for bone tissue using synchrotron small-angle X-ray scattering (SAXS; ∼1 nm resolution). The deduced structure for pre-mineralized bone fibrils includes features that are not present in RTT: spatially discrete microfibrils. The data are consistent with bone microfibrils similar to pentagonal Smith microfibrils, but are not consistent with the (nondiscrete) quasi-hexagonal microfibrils reported for RTT. These results indicate that collagen fibrils in bone and tendon differ in their internal structure in a manner that allows bone fibrils, but not tendon fibrils, to internally mineralize. In addition, the unique pattern of collagen cross-link types and quantities in mineralized tissues can be can be accounted for, in structural/functional terms, based on a discrete microfibril model.

摘要

脊椎动物的进化需要超分子进化中的一个关键发展

内部矿化的胶原原纤维。在骨骼中,胶原分子和矿物晶体形成一种纳米复合材料,其拉伸强度可与铸铁媲美,但重量轻几倍,柔韧性更好。目前对源自大鼠尾腱 (RTT) 的胶原原纤维内部纳米结构的理解并不能解释矿物晶体如何在胶原原纤维内成核和生长。几十年来,研究骨骼时遇到的实验障碍阻碍了这一问题的解决。本报告提出了一种基于同步加速器小角 X 射线散射 (SAXS; ∼1nm 分辨率) 对骨组织进行的多个 resolved equatorial reflections 的空前观察,提出了骨原纤维中胶原分子的侧堆积模型。推断出的预矿化骨原纤维结构包括 RTT 中不存在的特征:空间离散的微原纤维。这些数据与类似于五边形 Smith 微原纤维的骨微原纤维一致,但与 RTT 报道的 (非离散) 准六边形微原纤维不一致。这些结果表明,骨和肌腱中的胶原原纤维在允许骨原纤维内部矿化而不是肌腱原纤维内部矿化的方式上在其内部结构上存在差异。此外,基于离散微原纤维模型,可以从结构/功能角度解释矿化组织中独特的胶原交联类型和数量模式。

相似文献

6
Molecular packing of type I collagen in tendon.肌腱中I型胶原蛋白的分子堆积
J Mol Biol. 1998 Jan 16;275(2):255-67. doi: 10.1006/jmbi.1997.1449.

引用本文的文献

本文引用的文献

2
Understanding the local actions of lipids in bone physiology.了解脂质在骨生理学中的局部作用。
Prog Lipid Res. 2015 Jul;59:126-46. doi: 10.1016/j.plipres.2015.06.002. Epub 2015 Jun 26.
3
Glycosylation and cross-linking in bone type I collagen.骨I型胶原中的糖基化和交联
J Biol Chem. 2014 Aug 15;289(33):22636-22647. doi: 10.1074/jbc.M113.528513. Epub 2014 Jun 23.
8
Lateral packing of mineral crystals in bone collagen fibrils.骨胶原纤维中矿物晶体的侧向堆积。
Biophys J. 2008 Aug;95(4):1985-92. doi: 10.1529/biophysj.107.128355. Epub 2008 Mar 21.
9
Microfibrillar structure of type I collagen in situ.原位I型胶原蛋白的微纤维结构。
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9001-5. doi: 10.1073/pnas.0502718103. Epub 2006 Jun 2.
10
Molecular structure of the collagen triple helix.胶原蛋白三螺旋的分子结构。
Adv Protein Chem. 2005;70:301-39. doi: 10.1016/S0065-3233(05)70009-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验