Ho Adrian, Angel Roey, Veraart Annelies J, Daebeler Anne, Jia Zhongjun, Kim Sang Yoon, Kerckhof Frederiek-Maarten, Boon Nico, Bodelier Paul L E
Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands.
Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna Vienna, Austria.
Front Microbiol. 2016 Aug 23;7:1285. doi: 10.3389/fmicb.2016.01285. eCollection 2016.
Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.
微生物相互作用是微生物生态学研究的一个重要组成部分,然而微生物相互作用在群落功能中的作用、程度和相关性仍不清楚,特别是在全球生物地球化学循环的背景下。虽然许多研究已经揭示了影响特定过程的物理化学线索,但对(微)生物控制以及可能引导微生物群落导致功能改变的相互作用却知之甚少。然而,最近越来越多的证据表明,一个群落的协同作用可能与单个微生物的综合作用有显著不同,从而产生新的特性。在这里,我们通过分析一个理解较为充分的微生物类群,即好氧甲烷氧化细菌(MOB),来举例说明微生物相互作用对生态系统过程的重要性。我们回顾了相关文献,这些文献为微生物相互作用在调节甲烷氧化中的相关性提供了令人信服的证据。通过重新分析来自各种复杂环境设置的稳定同位素探测研究的文献数据,来寻找以甲烷为食的群落中微生物关联的证据。通过基于相关网络的分析,利用涵盖不同环境的数据集评估活跃的MOB与其他微生物之间可能的正相互作用,在这些环境中,一个聚生体中密切相互作用的成员可能会改变甲烷氧化活性。虽然甲烷营养作用被用作一个模型系统,但我们假设的基本原理可能适用于介导其他生物地球化学过程的其他微生物类群。