Suppr超能文献

在精神分裂症研究中,监督式多变量全脑降维无助于实现高分类性能。

Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research.

作者信息

Janousova Eva, Montana Giovanni, Kasparek Tomas, Schwarz Daniel

机构信息

Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Czech Republic.

Department of Biomedical Engineering, King's College London London, UK.

出版信息

Front Neurosci. 2016 Aug 25;10:392. doi: 10.3389/fnins.2016.00392. eCollection 2016.

Abstract

We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies.

摘要

我们研究了带重采样的惩罚线性判别分析(一种监督式多变量全脑降维技术)如何有助于精神分裂症的诊断和研究。在一项针对52名首发精神分裂症患者和52名健康对照者的磁共振脑图像实验中,该方法使我们能够选择与精神分裂症相关的脑区,如左侧前额叶皮质、前扣带回、右侧前岛叶、丘脑和海马体。然而,基于这种降维后数据的分类性能并不显著优于使用t检验的单变量大量选择降维数据或使用主成分分析的无监督多变量降维数据的分类。此外,我们发现成像特征类型(即局部变形或灰质体积)和分类方法(特别是线性判别分析或线性支持向量机)对分类结果没有重要影响。然而,我们确定了交叉验证设置对分类性能有显著影响,因为即使在选择脑成像特征时进行了重采样,分类结果仍被高估。因此,在没有外部验证集的情况下,在分析的所有步骤(不仅是分类期间)都进行交叉验证以避免乐观地偏向分类研究结果至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7290/4997127/d617d691cdd1/fnins-10-00392-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验