Celiz A D, Smith J G W, Patel A K, Langer R, Anderson D G, Barrett D A, Young L E, Davies M C, Denning C, Alexander M R
Laboratory of Biophysics and Surface Analysis , School of Pharmacy , University of Nottingham , Nottingham , NG7 2RD , UK . Email:
Wolfson Centre for Stem Cells , Tissue Engineering and Modelling Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , UK.
Biomater Sci. 2014 Nov 30;2(11):1604-1611. doi: 10.1039/c4bm00054d. Epub 2014 May 12.
Materials discovery provides the opportunity to identify novel materials that are tailored to complex biological environments by using combinatorial mixing of monomers to form large libraries of polymers as micro arrays. The materials discovery approach is predicated on the use of the largest chemical diversity possible, yet previous studies into human pluripotent stem cell (hPSC) response to polymer microarrays have been limited to 20 or so different monomer identities in each study. Here we show that it is possible to print and assess cell adhesion of 141 different monomers in a microarray format. This provides access to the largest chemical space to date, allowing us to meet the regenerative medicine challenge to provide scalable synthetic culture ware. This study identifies new materials suitable for hPSC expansion that could not have been predicted from previous knowledge of cell-material interactions.
材料发现提供了一个机会,即通过单体的组合混合来形成作为微阵列的聚合物大文库,从而识别出适合复杂生物环境的新型材料。材料发现方法基于尽可能使用最大的化学多样性,然而,先前关于人类多能干细胞(hPSC)对聚合物微阵列反应的研究在每项研究中都仅限于大约20种不同的单体类型。在这里,我们表明可以以微阵列形式打印并评估141种不同单体的细胞粘附情况。这提供了迄今为止最大的化学空间,使我们能够应对再生医学的挑战,提供可扩展的合成培养器皿。这项研究确定了适合hPSC扩增的新材料,这些材料是根据以前的细胞-材料相互作用知识无法预测的。