Suppr超能文献

具有噪声感知拓扑一致性的组织病理学图像半监督分割

Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency.

作者信息

Xu Meilong, Hu Xiaoling, Gupta Saumya, Abousamra Shahira, Chen Chao

机构信息

Stony Brook University, Stony Brook, NY, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

Comput Vis ECCV. 2024;15136:271-289. doi: 10.1007/978-3-031-73229-4_16. Epub 2024 Oct 25.

Abstract

In digital pathology, segmenting densely distributed objects like glands and nuclei is crucial for downstream analysis. Since detailed pixel-wise annotations are very time-consuming, we need semi-supervised segmentation methods that can learn from unlabeled images. Existing semi-supervised methods are often prone to topological errors, ., missing or incorrectly merged/separated glands or nuclei. To address this issue, we propose , the first semi-supervised method that learns the topological representation from unlabeled histopathology images. The major challenge is for unlabeled images; we only have predictions carrying noisy topology. To this end, we introduce a noise-aware topological consistency loss to align the representations of a teacher and a student model. By decomposing the topology of the prediction into signal topology and noisy topology, we ensure that the models learn the true topological signals and become robust to noise. Extensive experiments on public histopathology image datasets show the superiority of our method, especially on topology-aware evaluation metrics. Code is available at https://github.com/Melon-Xu/TopoSemiSeg.

摘要

在数字病理学中,分割腺体和细胞核等密集分布的对象对于下游分析至关重要。由于详细的逐像素注释非常耗时,我们需要能够从未标记图像中学习的半监督分割方法。现有的半监督方法往往容易出现拓扑错误,例如腺体或细胞核的缺失、错误合并或分离。为了解决这个问题,我们提出了第一种从未标记的组织病理学图像中学习拓扑表示的半监督方法。主要挑战在于未标记图像;我们只有携带噪声拓扑的预测结果。为此,我们引入了一种噪声感知拓扑一致性损失,以对齐教师模型和学生模型的表示。通过将预测的拓扑分解为信号拓扑和噪声拓扑,我们确保模型学习到真实的拓扑信号并对噪声具有鲁棒性。在公共组织病理学图像数据集上进行的大量实验表明了我们方法的优越性,特别是在拓扑感知评估指标上。代码可在https://github.com/Melon-Xu/TopoSemiSeg获取。

相似文献

4
Interventions to prevent occupational noise-induced hearing loss.预防职业性噪声性听力损失的干预措施。
Cochrane Database Syst Rev. 2017 Jul 7;7(7):CD006396. doi: 10.1002/14651858.CD006396.pub4.
6
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.

引用本文的文献

1
: Generating Histopathology Cell Topology with a Diffusion Model.利用扩散模型生成组织病理学细胞拓扑结构
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:20979-20989. doi: 10.1109/cvpr52734.2025.01954. Epub 2025 Aug 13.
2
Hard Negative Sample Mining for Whole Slide Image Classification.用于全切片图像分类的难负样本挖掘
Med Image Comput Comput Assist Interv. 2024 Oct;15004:144-154. doi: 10.1007/978-3-031-72083-3_14. Epub 2024 Oct 14.

本文引用的文献

1
Topology-Aware Uncertainty for Image Segmentation.用于图像分割的拓扑感知不确定性
Adv Neural Inf Process Syst. 2024;36:8186-8207. Epub 2024 May 30.
6
Semi-Supervised Neuron Segmentation via Reinforced Consistency Learning.通过强化一致性学习实现半监督神经元分割
IEEE Trans Med Imaging. 2022 Nov;41(11):3016-3028. doi: 10.1109/TMI.2022.3176050. Epub 2022 Oct 27.
8
TA-Net: Topology-Aware Network for Gland Segmentation.TA-Net:用于腺体分割的拓扑感知网络。
IEEE Winter Conf Appl Comput Vis. 2022 Jan;2022:3241-3249. doi: 10.1109/wacv51458.2022.00330. Epub 2022 Feb 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验