Suppr超能文献

生发中心特异性基因座控制区锚定的B细胞亲和力成熟过程中基因组的多层次重组

Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region.

作者信息

Bunting Karen L, Soong T David, Singh Rajat, Jiang Yanwen, Béguelin Wendy, Poloway David W, Swed Brandon L, Hatzi Katerina, Reisacher William, Teater Matt, Elemento Olivier, Melnick Ari M

机构信息

Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.

Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA.

出版信息

Immunity. 2016 Sep 20;45(3):497-512. doi: 10.1016/j.immuni.2016.08.012. Epub 2016 Sep 13.

Abstract

During the humoral immune response, B cells undergo a dramatic change in phenotype to enable antibody affinity maturation in germinal centers (GCs). Using genome-wide chromosomal conformation capture (Hi-C), we found that GC B cells undergo massive reorganization of the genomic architecture that encodes the GC B cell transcriptome. Coordinate expression of genes that specify the GC B cell phenotype-most prominently BCL6-was achieved through a multilayered chromatin reorganization process involving (1) increased promoter connectivity, (2) formation of enhancer networks, (3) 5' to 3' gene looping, and (4) merging of gene neighborhoods that share active epigenetic marks. BCL6 was an anchor point for the formation of GC-specific gene and enhancer loops on chromosome 3. Deletion of a GC-specific, highly interactive locus control region upstream of Bcl6 abrogated GC formation in mice. Thus, large-scale and multi-tiered genomic three-dimensional reorganization is required for coordinate expression of phenotype-driving gene sets that determine the unique characteristics of GC B cells.

摘要

在体液免疫反应过程中,B细胞的表型会发生显著变化,以实现生发中心(GCs)中抗体亲和力的成熟。利用全基因组染色体构象捕获技术(Hi-C),我们发现GC B细胞经历了编码GC B细胞转录组的基因组结构的大规模重组。通过一个多层染色质重组过程实现了指定GC B细胞表型的基因(最显著的是BCL6)的协调表达,该过程包括:(1)增强启动子连接性;(2)形成增强子网络;(3)5'到3'基因环化;(4)合并共享活性表观遗传标记的基因邻域。BCL6是3号染色体上GC特异性基因和增强子环形成的锚点。删除Bcl6上游的一个GC特异性、高度相互作用的基因座控制区域可消除小鼠体内的GC形成。因此,决定GC B细胞独特特征的表型驱动基因集的协调表达需要大规模和多层次的基因组三维重组。

相似文献

7
Dynamics of B cells in germinal centres.生发中心B细胞的动态变化
Nat Rev Immunol. 2015 Mar;15(3):137-48. doi: 10.1038/nri3804. Epub 2015 Feb 6.

引用本文的文献

3

本文引用的文献

4
A mouse geneticist's practical guide to CRISPR applications.CRISPR应用的小鼠遗传学家实用指南。
Genetics. 2015 Jan;199(1):1-15. doi: 10.1534/genetics.114.169771. Epub 2014 Sep 29.
9
Functional implications of genome topology.基因组拓扑结构的功能意义。
Nat Struct Mol Biol. 2013 Mar;20(3):290-9. doi: 10.1038/nsmb.2474.
10
Epigenetic programming and reprogramming during development.发育过程中的表观遗传编程和重编程。
Nat Struct Mol Biol. 2013 Mar;20(3):282-9. doi: 10.1038/nsmb.2489. Epub 2013 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验