Li Gang, Li Qing-Shan, Li Wen-Bin, Wei Jian, Chang Wen-Kai, Chen Zhi, Qiao Hu-Yun, Jia Ying-Wei, Tian Jiang-Hua, Liang Bing-Sheng
Department of Orthopedics, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
Neural Regen Res. 2016 Aug;11(8):1293-303. doi: 10.4103/1673-5374.189195.
Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus muscle) and a typical fast muscle (tibialis anterior muscle) at an early denervation stage in a rat model. Results showed that miR-206, miR-195, miR-23a, and miR-30e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles. Additionally, certain miRNA molecules (miR-214, miR-221, miR-222, miR-152, miR-320, and Let-7e) could be key regulatory factors in the denervated atrophy process involved in fast muscle. Analysis of signaling pathway networks revealed the miRNA molecules that were responsible for regulating certain signaling pathways, which were the final targets (e.g., p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/mTOR pathway regulates atrogin-1 and MuRF1 expression via FoxO phosphorylation). Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.
去神经支配通常会导致骨骼肌萎缩。去神经支配的慢肌和快肌萎缩的决定似乎涉及不同的机制。在表观遗传水平上,微小RNA(miRNA)被认为高度参与去神经支配肌肉的病理生理过程。我们使用miRNA微阵列来确定大鼠模型早期去神经支配阶段典型慢肌(比目鱼肌)和典型快肌(胫骨前肌)的miRNA表达谱。结果表明,miR-206、miR-195、miR-23a和miR-30e可能是去神经支配的慢肌从慢肌向快肌转变过程中的关键因素。此外,某些miRNA分子(miR-214、miR-221、miR-222、miR-152、miR-320和Let-7e)可能是快肌去神经支配萎缩过程中的关键调节因子。信号通路网络分析揭示了负责调节某些信号通路的miRNA分子,这些信号通路是最终靶点(例如,p38丝裂原活化蛋白激酶途径;Pax3/Pax7通过HDAC4调节肌养蛋白和卵泡抑素;胰岛素样生长因子1/磷脂酰肌醇-3激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白途径通过叉头框蛋白O磷酸化调节肌肉萎缩相关基因1和肌肉特异性泛素连接酶1的表达)。我们的结果有助于更好地理解去神经支配骨骼肌病理生理学的机制。