Suppr超能文献

失神经支配的快、慢肌萎缩早期的miRNA靶向信号通路

miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy.

作者信息

Li Gang, Li Qing-Shan, Li Wen-Bin, Wei Jian, Chang Wen-Kai, Chen Zhi, Qiao Hu-Yun, Jia Ying-Wei, Tian Jiang-Hua, Liang Bing-Sheng

机构信息

Department of Orthopedics, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.

出版信息

Neural Regen Res. 2016 Aug;11(8):1293-303. doi: 10.4103/1673-5374.189195.

Abstract

Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus muscle) and a typical fast muscle (tibialis anterior muscle) at an early denervation stage in a rat model. Results showed that miR-206, miR-195, miR-23a, and miR-30e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles. Additionally, certain miRNA molecules (miR-214, miR-221, miR-222, miR-152, miR-320, and Let-7e) could be key regulatory factors in the denervated atrophy process involved in fast muscle. Analysis of signaling pathway networks revealed the miRNA molecules that were responsible for regulating certain signaling pathways, which were the final targets (e.g., p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/mTOR pathway regulates atrogin-1 and MuRF1 expression via FoxO phosphorylation). Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.

摘要

去神经支配通常会导致骨骼肌萎缩。去神经支配的慢肌和快肌萎缩的决定似乎涉及不同的机制。在表观遗传水平上,微小RNA(miRNA)被认为高度参与去神经支配肌肉的病理生理过程。我们使用miRNA微阵列来确定大鼠模型早期去神经支配阶段典型慢肌(比目鱼肌)和典型快肌(胫骨前肌)的miRNA表达谱。结果表明,miR-206、miR-195、miR-23a和miR-30e可能是去神经支配的慢肌从慢肌向快肌转变过程中的关键因素。此外,某些miRNA分子(miR-214、miR-221、miR-222、miR-152、miR-320和Let-7e)可能是快肌去神经支配萎缩过程中的关键调节因子。信号通路网络分析揭示了负责调节某些信号通路的miRNA分子,这些信号通路是最终靶点(例如,p38丝裂原活化蛋白激酶途径;Pax3/Pax7通过HDAC4调节肌养蛋白和卵泡抑素;胰岛素样生长因子1/磷脂酰肌醇-3激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白途径通过叉头框蛋白O磷酸化调节肌肉萎缩相关基因1和肌肉特异性泛素连接酶1的表达)。我们的结果有助于更好地理解去神经支配骨骼肌病理生理学的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8661/5020829/ca8e39753235/NRR-11-1293-g002.jpg

相似文献

1
miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy.
Neural Regen Res. 2016 Aug;11(8):1293-303. doi: 10.4103/1673-5374.189195.
3
Identification of Potential miRNA-mRNA Regulatory Network in Denervated Muscular Atrophy by Bioinformatic Analysis.
Biomed Res Int. 2022 Jun 28;2022:6042591. doi: 10.1155/2022/6042591. eCollection 2022.
8
MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy.
J Am Soc Nephrol. 2017 Sep;28(9):2631-2640. doi: 10.1681/ASN.2016111213. Epub 2017 Apr 11.
10
Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation.
Front Physiol. 2020 Aug 12;11:988. doi: 10.3389/fphys.2020.00988. eCollection 2020.

引用本文的文献

1
The Role of Non-Coding RNAs in Regulating Cachexia Muscle Atrophy.
Cells. 2024 Sep 27;13(19):1620. doi: 10.3390/cells13191620.
2
The Regulation of miR-206 on BDNF: A Motor Function Restoration Mechanism Research on Cerebral Ischemia Rats by Meridian Massage.
Evid Based Complement Alternat Med. 2022 Aug 27;2022:8172849. doi: 10.1155/2022/8172849. eCollection 2022.
3
Identification of Potential miRNA-mRNA Regulatory Network in Denervated Muscular Atrophy by Bioinformatic Analysis.
Biomed Res Int. 2022 Jun 28;2022:6042591. doi: 10.1155/2022/6042591. eCollection 2022.
5
Decreased miR-497-5p Suppresses IL-6 Induced Atrophy in Muscle Cells.
Cells. 2021 Dec 14;10(12):3527. doi: 10.3390/cells10123527.
6
Role of miRNAs and lncRNAs in dexamethasone-induced myotube atrophy .
Exp Ther Med. 2021 Feb;21(2):146. doi: 10.3892/etm.2020.9577. Epub 2020 Dec 16.
7
MicroRNA-152 Promotes Slow-Twitch Myofiber Formation via Targeting Uncoupling Protein-3 Gene.
Animals (Basel). 2019 Sep 10;9(9):669. doi: 10.3390/ani9090669.
8
MicroRNA suppression of stress-responsive NDRG2 during dexamethasone treatment in skeletal muscle cells.
BMC Mol Cell Biol. 2019 May 28;20(1):12. doi: 10.1186/s12860-019-0194-3.
10
Inhibition of miR‑214 attenuates the migration and invasion of triple‑negative breast cancer cells.
Mol Med Rep. 2019 May;19(5):4035-4042. doi: 10.3892/mmr.2019.10112. Epub 2019 Apr 1.

本文引用的文献

4
Functional recovery of denervated skeletal muscle with sensory or mixed nerve protection: a pilot study.
PLoS One. 2013 Nov 7;8(11):e79746. doi: 10.1371/journal.pone.0079746. eCollection 2013.
5
De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16229-34. doi: 10.1073/pnas.1312331110. Epub 2013 Sep 16.
6
Calcium-dependent deceleration of the cell cycle in muscle cells by simulated microgravity.
FASEB J. 2013 May;27(5):2045-54. doi: 10.1096/fj.12-218693. Epub 2013 Jan 30.
7
Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle.
Mol Cell Endocrinol. 2013 Jan 30;365(2):174-86. doi: 10.1016/j.mce.2012.10.019. Epub 2012 Oct 29.
8
microRNAs in skeletal muscle differentiation and disease.
Clin Sci (Lond). 2012 Dec;123(11):611-25. doi: 10.1042/CS20110634.
9
Two common mutations (p.Gln832X and c.663+1G>C) account for about a third of the DYSF mutations in Korean patients with dysferlinopathy.
Neuromuscul Disord. 2012 Jun;22(6):505-10. doi: 10.1016/j.nmd.2011.12.007. Epub 2012 Jan 31.
10
miR-206 and -486 induce myoblast differentiation by downregulating Pax7.
Mol Cell Biol. 2011 Jan;31(1):203-14. doi: 10.1128/MCB.01009-10. Epub 2010 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验