Park Chae Jung, Eom Jihwan, Park Ki Sung, Park Yae Won, Chung Seok Jong, Kim Yun Joong, Ahn Sung Soo, Kim Jinna, Lee Phil Hyu, Sohn Young Ho, Lee Seung-Koo
Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin-si, Gyeonggi-do, South Korea.
Department of Computer Science, Yonsei University, Seoul, South Korea.
NPJ Parkinsons Dis. 2023 Aug 30;9(1):127. doi: 10.1038/s41531-023-00566-1.
Cognitive impairment in Parkinson's disease (PD) severely affects patients' prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In this retrospective study, 262 patients with newly diagnosed PD (June 2008-July 2017, follow-up >5 years) were included. MRI radiomic features (n = 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia development: (1) a clinical model-age, disease duration, and cognitive composite scores, and (2) a combined clinical and radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models' interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and 24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n = 168) and test sets (n = 94), respectively. The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894, P = 0.284) and test set (AUCs 0.889 vs. 0.722, P = 0.016). The cognitive composite scores of the frontal/executive function domain contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline. Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future cognitive decline in PD.
帕金森病(PD)中的认知障碍严重影响患者的预后,早期发现有痴呆症转化高风险的患者对于制定治疗策略很重要。我们旨在研究基底节区的多参数MRI放射组学与临床特征相结合时,是否能改善对PD患者痴呆症发展的预测。在这项回顾性研究中,纳入了262例新诊断的PD患者(2008年6月至2017年7月,随访时间>5年)。从双侧尾状核和壳核中提取MRI放射组学特征(n = 1284)。开发了两个模型来预测痴呆症的发展:(1)临床模型——年龄、病程和认知综合评分,以及(2)临床与放射组学联合模型。计算每个模型的受试者操作特征曲线下面积(AUC)。研究了模型的可解释性。在总共262例PD患者中(平均年龄68岁±8[标准差];134例男性),分别有51例(30.4%)和24例(25.5%)患者在训练集(n = 168)和测试集(n = 94)中于PD诊断后的5年内发展为痴呆症。在训练集(AUC分别为0.928对0.894,P = 0.28)和测试集(AUC分别为0.889对0.722,P = 0.016)中,联合模型比临床模型具有更好的预测性能。额叶/执行功能领域的认知综合评分对预测痴呆症的贡献最大。来自尾状核的放射组学也与认知衰退高度相关。多参数MRI放射组学与临床特征相结合时,可能对预测PD患者未来的认知衰退具有额外的预后价值。