Suppr超能文献

9.4特斯拉下人类上丘视觉信号的深度依赖性

Depth-dependence of visual signals in the human superior colliculus at 9.4 T.

作者信息

Loureiro Joana R, Hagberg Gisela E, Ethofer Thomas, Erb Michael, Bause Jonas, Ehses Philipp, Scheffler Klaus, Himmelbach Marc

机构信息

High-Field MR, Max Planck Institute for Biological Cybernetics, Tuebingen, DE, Germany.

Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, DE, Germany.

出版信息

Hum Brain Mapp. 2017 Jan;38(1):574-587. doi: 10.1002/hbm.23404. Epub 2016 Sep 23.

Abstract

The superior colliculus (SC) is a layered structure located in the midbrain. We exploited the improved spatial resolution and BOLD signal strength available at 9.4 T to investigate the depth profile of visual BOLD responses in the human SC based on distortion-corrected EPI data with a 1 mm isotropic resolution. We used high resolution (350 µm in-plane) anatomical images to determine regions-of-interest of the SC and applied a semi-automated method to segment it into superficial, intermediate, and deep zones. A greater than linear increase in sensitivity of the functional signal at 9.4 T allowed us to detect a statistically significant depth pattern in a group analysis with a 20 min stimulation paradigm. Descriptive data showed consistent depth profiles also in single individuals. The highest signals were localized to the superficial layers of the right and left SC during contralateral stimulation, which was in good agreement with its functional architecture known from non-human primates. This study thus demonstrates the potential of 9.4 T MRI for functional neuroimaging even in deeply located, particularly challenging brain structures such as the SC. Hum Brain Mapp 38:574-587, 2017. © 2016 Wiley Periodicals, Inc.

摘要

上丘(SC)是位于中脑的分层结构。我们利用9.4 T时可用的更高空间分辨率和BOLD信号强度,基于具有1毫米各向同性分辨率的失真校正EPI数据,研究人类SC中视觉BOLD反应的深度分布。我们使用高分辨率(平面内350 µm)解剖图像来确定SC的感兴趣区域,并应用半自动方法将其分割为浅、中、深区。9.4 T时功能信号灵敏度的增加大于线性,这使我们能够在采用20分钟刺激范式的组分析中检测到具有统计学意义的深度模式。描述性数据显示单个人也具有一致的深度分布。在对侧刺激期间,最高信号位于左右SC的浅层,这与其从非人类灵长类动物已知的功能结构高度一致。因此,本研究证明了9.4 T MRI在功能神经成像方面的潜力,即使是对于像SC这样位于深部、特别具有挑战性的脑结构。《人类脑图谱》38:574 - 587,2017年。© 2016威利期刊公司。

相似文献

1
Depth-dependence of visual signals in the human superior colliculus at 9.4 T.
Hum Brain Mapp. 2017 Jan;38(1):574-587. doi: 10.1002/hbm.23404. Epub 2016 Sep 23.
2
Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study.
J Neurophysiol. 2005 Oct;94(4):2491-503. doi: 10.1152/jn.00288.2005. Epub 2005 Jun 8.
3
Dissociation of reach-related and visual signals in the human superior colliculus.
Neuroimage. 2013 Nov 15;82:61-7. doi: 10.1016/j.neuroimage.2013.05.101. Epub 2013 May 30.
4
In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging.
Neuroimage. 2011 Jan 1;54(1):389-95. doi: 10.1016/j.neuroimage.2010.07.015. Epub 2010 Jul 13.
5
Topography of covert visual attention in human superior colliculus.
J Neurophysiol. 2010 Dec;104(6):3074-83. doi: 10.1152/jn.00283.2010. Epub 2010 Sep 22.
6
Activity in the human superior colliculus relating to endogenous saccade preparation and execution.
J Neurophysiol. 2015 Aug;114(2):1048-58. doi: 10.1152/jn.00825.2014. Epub 2015 Jun 3.
7
In-vivo quantitative structural imaging of the human midbrain and the superior colliculus at 9.4T.
Neuroimage. 2018 Aug 15;177:117-128. doi: 10.1016/j.neuroimage.2018.04.071. Epub 2018 May 2.
8
Activation of superior colliculi in humans during visual exploration.
BMC Neurosci. 2007 Aug 14;8:66. doi: 10.1186/1471-2202-8-66.
9
Ultra High Field fMRI of Human Superior Colliculi Activity during Affective Visual Processing.
Sci Rep. 2020 Jan 28;10(1):1331. doi: 10.1038/s41598-020-57653-z.
10
Superior colliculus resting state networks in post-traumatic stress disorder and its dissociative subtype.
Hum Brain Mapp. 2018 Jan;39(1):563-574. doi: 10.1002/hbm.23865. Epub 2017 Nov 13.

引用本文的文献

1
Depth relationships and measures of tissue thickness in dorsal midbrain.
Hum Brain Mapp. 2020 Dec 15;41(18):5083-5096. doi: 10.1002/hbm.25185. Epub 2020 Sep 1.
2
Ultra High Field fMRI of Human Superior Colliculi Activity during Affective Visual Processing.
Sci Rep. 2020 Jan 28;10(1):1331. doi: 10.1038/s41598-020-57653-z.
3
EPI distortion correction for concurrent human brain stimulation and imaging at 3T.
J Neurosci Methods. 2019 Nov 1;327:108400. doi: 10.1016/j.jneumeth.2019.108400. Epub 2019 Aug 18.
5
Analysis strategies for high-resolution UHF-fMRI data.
Neuroimage. 2018 Mar;168:296-320. doi: 10.1016/j.neuroimage.2017.04.053. Epub 2017 Apr 29.

本文引用的文献

1
New tissue priors for improved automated classification of subcortical brain structures on MRI.
Neuroimage. 2016 Apr 15;130:157-166. doi: 10.1016/j.neuroimage.2016.01.062. Epub 2016 Feb 5.
2
PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.
Magn Reson Med. 2016 May;75(5):2055-63. doi: 10.1002/mrm.25746. Epub 2015 Jun 22.
3
In Vivo 7T MRI of the Non-Human Primate Brainstem.
PLoS One. 2015 May 12;10(5):e0127049. doi: 10.1371/journal.pone.0127049. eCollection 2015.
5
Distortion correction in EPI using an extended PSF method with a reversed phase gradient approach.
PLoS One. 2015 Feb 23;10(2):e0116320. doi: 10.1371/journal.pone.0116320. eCollection 2015.
6
Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus.
Neuroimage. 2015 May 1;111:159-66. doi: 10.1016/j.neuroimage.2015.02.025. Epub 2015 Feb 19.
8
Ultra-high field magnetic resonance imaging of the basal ganglia and related structures.
Front Hum Neurosci. 2014 Nov 5;8:876. doi: 10.3389/fnhum.2014.00876. eCollection 2014.
9
Susceptibility-weighted imaging of the venous networks around the brain stem.
Neuroradiology. 2015 Feb;57(2):163-9. doi: 10.1007/s00234-014-1450-z. Epub 2014 Oct 18.
10
Fully automated segmentation of the pons and midbrain using human T1 MR brain images.
PLoS One. 2014 Jan 28;9(1):e85618. doi: 10.1371/journal.pone.0085618. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验