Suppr超能文献

用于改进MRI上皮质下脑结构自动分类的新组织先验信息。

New tissue priors for improved automated classification of subcortical brain structures on MRI.

作者信息

Lorio S, Fresard S, Adaszewski S, Kherif F, Chowdhury R, Frackowiak R S, Ashburner J, Helms G, Weiskopf N, Lutti A, Draganski B

机构信息

LREN, Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland.

Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.

出版信息

Neuroimage. 2016 Apr 15;130:157-166. doi: 10.1016/j.neuroimage.2016.01.062. Epub 2016 Feb 5.

Abstract

Despite the constant improvement of algorithms for automated brain tissue classification, the accurate delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI data and from the lack of adequate priors for basal ganglia and thalamus. The most recent attempts to obtain such priors were based on cohorts with limited size that included subjects in a narrow age range, failing to account for age-related gray-white matter contrast changes. Aiming to improve the anatomical plausibility of automated brain tissue classification from T1w data, we have created new tissue probability maps for subcortical gray matter regions. Supported by atlas-derived spatial information, raters manually labeled subcortical structures in a cohort of healthy subjects using magnetization transfer saturation and R2* MRI maps, which feature optimal gray-white matter contrast in these areas. After assessment of inter-rater variability, the new tissue priors were tested on T1w data within the framework of voxel-based morphometry. The automated detection of gray matter in subcortical areas with our new probability maps was more anatomically plausible compared to the one derived with currently available priors. We provide evidence that the improved delineation compensates age-related bias in the segmentation of iron rich subcortical regions. The new tissue priors, allowing robust detection of basal ganglia and thalamus, have the potential to enhance the sensitivity of voxel-based morphometry in both healthy and diseased brains.

摘要

尽管用于自动脑组织分类的算法不断改进,但利用磁共振成像(MRI)数据准确描绘皮层下结构仍然具有挑战性。主要困难源于T1加权(T1w)MRI数据中富含铁区域的灰白质对比度低,以及基底神经节和丘脑缺乏足够的先验信息。最近获取此类先验信息的尝试基于规模有限的队列,这些队列中的受试者年龄范围狭窄,未能考虑与年龄相关的灰白质对比度变化。为了提高从T1w数据进行自动脑组织分类的解剖学合理性,我们创建了新的皮层下灰质区域组织概率图。在图谱衍生的空间信息支持下,评估人员使用磁化传递饱和和R2* MRI图谱,在一组健康受试者中手动标记皮层下结构,这些图谱在这些区域具有最佳的灰白质对比度。在评估了评估者间的变异性后,在基于体素的形态测量框架内,对T1w数据测试了新的组织先验信息。与使用当前可用先验信息得出的结果相比,使用我们的新概率图对皮层下区域灰质进行自动检测在解剖学上更合理。我们提供的证据表明,改进后的描绘补偿了富含铁的皮层下区域分割中与年龄相关的偏差。新的组织先验信息能够可靠地检测基底神经节和丘脑,有可能提高基于体素的形态测量在健康和患病大脑中的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b5/4819722/49cbe217ab4e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验