Suppr超能文献

基于约束因子图割的主动轮廓法在RNA干扰筛选中的细胞图像自动分割

Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening.

作者信息

Chen C, Li H, Zhou X, Wong S T C

机构信息

Department of EEIS, University of Science and Technology of China, Hefei, PR China.

出版信息

J Microsc. 2008 May;230(Pt 2):177-91. doi: 10.1111/j.1365-2818.2008.01974.x.

Abstract

Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.

摘要

基于图像的高通量全基因组RNA干扰(RNAi)实验越来越多地被开展,以促进对复杂生物过程中基因功能的理解。此类实验的自动筛选会生成大量图像质量差异很大的图像,这使得人工分析耗时过长。因此,迫切需要有效的自动图像分析技术,其中分割是最重要的步骤之一。本文提出了一种用于全基因组RNAi筛选图像中细胞分割的全自动方法。该方法包括两个步骤:细胞核和细胞质分割。先提取并标记细胞核以初始化细胞质分割。由于RNAi图像质量相当差,设计了一种新颖的尺度自适应可控滤波器来增强图像,以便在多刺细胞上提取细长的突起。然后,将约束因子GCBAC方法和形态学算法结合成一种综合方法来分割紧密聚集的细胞。与使用种子分水岭法得到的结果以及真实情况(即RNAi筛选数据中专家的手动标注结果)相比,我们的方法具有更高的准确性。与主动轮廓法相比,我们的方法耗时少得多。积极的结果表明,所提出的方法可应用于多通道图像筛选数据的自动图像分析。

相似文献

2
Cell nuclei and cytoplasm joint segmentation using the sliding band filter.
IEEE Trans Med Imaging. 2010 Aug;29(8):1463-73. doi: 10.1109/TMI.2010.2048253. Epub 2010 Jun 3.
4
Automatic segmentation of high-throughput RNAi fluorescent cellular images.
IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):109-17. doi: 10.1109/TITB.2007.898006.
5
An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling.
J Biomed Inform. 2009 Feb;42(1):32-40. doi: 10.1016/j.jbi.2008.04.007. Epub 2008 Apr 29.
6
Towards automated cellular image segmentation for RNAi genome-wide screening.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):885-92. doi: 10.1007/11566465_109.
7
Algorithms for cytoplasm segmentation of fluorescence labelled cells.
Anal Cell Pathol. 2002;24(2-3):101-11. doi: 10.1155/2002/821782.
8
[Study on automatic segmentation of color images applied to blood cells].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2002 Jun;19(2):251-5.
9
Cytoplasm segmentation on cervical cell images using graph cut-based approach.
Biomed Mater Eng. 2014;24(1):1125-31. doi: 10.3233/BME-130912.

引用本文的文献

1
Large-scale localization of touching somas from 3D images using density-peak clustering.
BMC Bioinformatics. 2016 Sep 15;17(1):375. doi: 10.1186/s12859-016-1252-x.
3
High-throughput histopathological image analysis via robust cell segmentation and hashing.
Med Image Anal. 2015 Dec;26(1):306-15. doi: 10.1016/j.media.2015.10.005. Epub 2015 Nov 9.
4
Automatic Myonuclear Detection in Isolated Single Muscle Fibers Using Robust Ellipse Fitting and Sparse Representation.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Jul-Aug;11(4):714-26. doi: 10.1109/TCBB.2013.151.
5
A computational approach to detect and segment cytoplasm in muscle fiber images.
Microsc Res Tech. 2015 Jun;78(6):508-18. doi: 10.1002/jemt.22502. Epub 2015 Apr 20.
7
Multi-scale Gaussian representation and outline-learning based cell image segmentation.
BMC Bioinformatics. 2013;14 Suppl 10(Suppl 10):S6. doi: 10.1186/1471-2105-14-S10-S6. Epub 2013 Aug 12.
8
Automated image segmentation of haematoxylin and eosin stained skeletal muscle cross-sections.
J Microsc. 2013 Dec;252(3):275-85. doi: 10.1111/jmi.12090. Epub 2013 Oct 13.
10
Automated Delineation of Lung Tumors from CT Images Using a Single Click Ensemble Segmentation Approach.
Pattern Recognit. 2013 Mar 1;46(3):692-702. doi: 10.1016/j.patcog.2012.10.005.

本文引用的文献

1
Towards automated cellular image segmentation for RNAi genome-wide screening.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):885-92. doi: 10.1007/11566465_109.
2
Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces.
IEEE Trans Image Process. 2005 Sep;14(9):1396-410. doi: 10.1109/tip.2005.852790.
3
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1124-37. doi: 10.1109/TPAMI.2004.60.
4
What energy functions can be minimized via graph cuts?
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):147-59. doi: 10.1109/TPAMI.2004.1262177.
5
Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections.
J Microsc. 2004 Jul;215(Pt 1):67-76. doi: 10.1111/j.0022-2720.2004.01338.x.
6
Genome-wide RNAi analysis of growth and viability in Drosophila cells.
Science. 2004 Feb 6;303(5659):832-5. doi: 10.1126/science.1091266.
7
A functional genomic analysis of cell morphology using RNA interference.
J Biol. 2003;2(4):27. doi: 10.1186/1475-4924-2-27. Epub 2003 Oct 1.
8
Algorithms for cytoplasm segmentation of fluorescence labelled cells.
Anal Cell Pathol. 2002;24(2-3):101-11. doi: 10.1155/2002/821782.
9
Segmentation of nuclei and cells using membrane related protein markers.
J Microsc. 2001 Mar;201(Pt 3):404-15. doi: 10.1046/j.1365-2818.2001.00854.x.
10
Applying watershed algorithms to the segmentation of clustered nuclei.
Cytometry. 1997 Aug 1;28(4):289-97. doi: 10.1002/(sici)1097-0320(19970801)28:4<289::aid-cyto3>3.0.co;2-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验