Suppr超能文献

人工智能在医学影像中的应用:心血管疾病精准表型分析的放射组学指南。

Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease.

机构信息

Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.

Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA.

出版信息

Cardiovasc Res. 2020 Nov 1;116(13):2040-2054. doi: 10.1093/cvr/cvaa021.

Abstract

Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expansion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging is the pillar of modern cardiovascular diagnostics, with modalities such as cardiac computed tomography (CT) now recognized as first-line options for cardiovascular risk stratification and the assessment of stable or even unstable patients. To date, cardiovascular imaging has lagged behind other fields, such as oncology, in the clinical translational of artificial intelligence (AI)-based approaches. We hereby review the current status of AI in non-invasive cardiovascular imaging, using cardiac CT as a running example of how novel machine learning (ML)-based radiomic approaches can improve clinical care. The integration of ML, deep learning, and radiomic methods has revealed direct links between tissue imaging phenotyping and tissue biology, with important clinical implications. More specifically, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging and CT, as well as lessons that can be learned from other areas. Finally, we propose a scientific framework in order to ensure the clinical and scientific validity of future studies in this novel, yet highly promising field. Still in its infancy, AI-based cardiovascular imaging has a lot to offer to both the patients and their doctors as it catalyzes the transition towards a more precise phenotyping of cardiovascular disease.

摘要

快速发展的无创成像技术,加上大量数据集的可用性和计算模型及能力的扩展,彻底改变了成像在医学中的作用。无创成像已成为现代心血管诊断的支柱,心脏计算机断层扫描(CT)等方式现在被认为是心血管风险分层以及稳定甚至不稳定患者评估的首选方法。迄今为止,心血管成像在人工智能(AI)应用的临床转化方面落后于其他领域,如肿瘤学。在此,我们以心脏 CT 为例,回顾了 AI 在无创心血管成像中的现状,探讨了基于新型机器学习(ML)的放射组学方法如何改善临床护理。ML、深度学习和放射组学方法的整合揭示了组织成像表型与组织生物学之间的直接联系,具有重要的临床意义。具体而言,我们讨论了 AI 在心脏成像和 CT 中的当前证据、优势、局限性和未来方向,以及可以从其他领域吸取的经验教训。最后,我们提出了一个科学框架,以确保该新颖而极有前途的领域未来研究的临床和科学有效性。基于 AI 的心血管成像仍处于起步阶段,但它为患者及其医生带来了很多益处,因为它推动了心血管疾病更精确表型的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f41/7585409/db45f5b81c42/cvaa021f7.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验