Onaygil Can, Kaya Handan, Ugurlu Mustafa Umit, Aribal Erkin
Oberlausitz-Kliniken gGmbH, Institute of Diagnostic and Interventional Radiology, Bautzen, Germany.
Marmara University School of Medicine, Department of Pathology, Pendik, Istanbul, Turkey.
J Magn Reson Imaging. 2017 Mar;45(3):660-672. doi: 10.1002/jmri.25481. Epub 2016 Sep 23.
To evaluate the diagnostic performances of the diffusion tensor imaging (DTI) parameters in the diagnosis of breast cancer and to investigate the variations in DTI parameters according to the breast cancer biomarkers.
At 3.0 Tesla (T), DTI was performed in 85 patients with 92 enhancing breast lesions. λ , λ , λ , mean diffusivity (MD), radial diffusivity (RD), fractional anisotropy (FA), relative anisotropy (RA), and geodesic anisotropy (GA) were studied and compared with diffusion-weighted imaging-derived apparent diffusion coefficient. Lesions were analyzed according to BIRADS lexicon. Logistic regression models were constructed to determine the contribution of DTI to the specificity and the accuracy of DCE-MRI. Breast cancer biomarkers; estrogen receptor (ER), HER-2 status, and Ki-67 were correlated with DTI in malignant cases.
Malignant lesions exhibited significantly lower MD, RD, λ , λ , λ and higher FA, RA, GA values (P < 0.001). Logistic regression models showed that MD, RD, λ , λ , λ , FA, and RA increase the specificity of the DCE-MRI (from 83.0% to 89.4-93.6%; P < 0.05). Higher RD, λ , λ and lower FA, RA, and GA values were observed in ER-negative breast cancer (P < 0.05). Ki-67 showed significant, negative correlation with FA, RA, GA, λ -λ and λ -λ (r = -0.336 to -0.435; P < 0.05).
Besides its ability to differentiate malignant breast lesions, DTI improves the specificity of conventional 3.0T breast MRI and shows correlation with biomarkers ER and Ki-67.
1 J. Magn. Reson. Imaging 2017;45:660-672.
评估扩散张量成像(DTI)参数在乳腺癌诊断中的诊断性能,并根据乳腺癌生物标志物研究DTI参数的变化。
在3.0特斯拉(T)场强下,对85例患者的92个强化乳腺病变进行DTI检查。研究了λ、λ、λ、平均扩散率(MD)、径向扩散率(RD)、分数各向异性(FA)、相对各向异性(RA)和测地线各向异性(GA),并与扩散加权成像得出的表观扩散系数进行比较。根据乳腺影像报告和数据系统(BIRADS)词典对病变进行分析。构建逻辑回归模型以确定DTI对动态对比增强磁共振成像(DCE-MRI)特异性和准确性的贡献。在恶性病例中,将乳腺癌生物标志物雌激素受体(ER)、人表皮生长因子受体2(HER-2)状态和Ki-67与DTI进行相关性分析。
恶性病变的MD、RD、λ、λ、λ显著降低,FA、RA、GA值显著升高(P < 0.001)。逻辑回归模型显示,MD、RD、λ、λ、λ、FA和RA提高了DCE-MRI的特异性(从83.0%提高到89.4%-93.6%;P < 0.05)。在ER阴性乳腺癌中观察到较高的RD、λ、λ值以及较低的FA、RA和GA值(P < 0.05)。Ki-67与FA、RA、GA、λ-λ和λ-λ呈显著负相关(r = -0.336至-0.435;P < 0.05)。
除了能够区分恶性乳腺病变外,DTI还提高了传统3.0T乳腺MRI的特异性,并显示出与生物标志物ER和Ki-67的相关性。
1 J.Magn.Reson.Imaging 2017;45:660 - 672。