He Wei-Jie, Yuan Qing-Song, Zhang You-Bing, Guo Mao-Wei, Gong An-Dong, Zhang Jing-Bo, Wu Ai-Bo, Huang Tao, Qu Bo, Li He-Ping, Liao Yu-Cai
Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China.
College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Toxins (Basel). 2016 Sep 24;8(10):277. doi: 10.3390/toxins8100277.
Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.
在全球范围内,单端孢霉烯族霉菌毒素脱氧雪腐镰刀菌烯醇(DON)和雪腐镰刀菌烯醇(NIV)是污染小粒谷物的分布最为广泛的霉菌毒素。在本研究中,通过原位土壤富集法从土壤中分离出具有脱环氧化活性的细菌群落PGC-3。对14个喷洒了DON的土壤样本进行筛选后发现,有4个样本能够将DON生物转化为脱环氧化DON(dE-DON)。其中,PGC-3菌落在将DON生物转化为dE-DON以及将NIV生物转化为dE-NIV方面表现出最高且最稳定的活性。在有氧条件下,PGC-3在较宽的pH值范围(5 - 10)和温度范围(20 - 37°C)内均表现出脱环氧化活性。持续暴露于DON的连续传代培养显著降低了该菌群落的微生物种群多样性。对16S rDNA序列的分析表明,PGC-3由10个细菌属组成。其中,脱硫脱硫弧菌属的一个物种在传代培养基中使用从0至500μg/mL的更高浓度DON时,相对丰度从0.03%稳步增加至1.55%(增加了52倍)。本研究为进一步开发可使谷物中镰孢菌属霉菌毒素解毒的生物活性剂奠定了基础,并有助于对解毒基因及其调控进行表征。