Suppr超能文献

从单细胞RNA测序数据中识别并去除细胞周期效应。

Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data.

作者信息

Barron Martin, Li Jun

机构信息

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Sci Rep. 2016 Sep 27;6:33892. doi: 10.1038/srep33892.

Abstract

Single-cell RNA-Sequencing (scRNA-Seq) is a revolutionary technique for discovering and describing cell types in heterogeneous tissues, yet its measurement of expression often suffers from large systematic bias. A major source of this bias is the cell cycle, which introduces large within-cell-type heterogeneity that can obscure the differences in expression between cell types. The current method for removing the cell-cycle effect is unable to effectively identify this effect and has a high risk of removing other biological components of interest, compromising downstream analysis. We present ccRemover, a new method that reliably identifies the cell-cycle effect and removes it. ccRemover preserves other biological signals of interest in the data and thus can serve as an important pre-processing step for many scRNA-Seq data analyses. The effectiveness of ccRemover is demonstrated using simulation data and three real scRNA-Seq datasets, where it boosts the performance of existing clustering algorithms in distinguishing between cell types.

摘要

单细胞RNA测序(scRNA-Seq)是一种用于发现和描述异质组织中细胞类型的革命性技术,但其表达测量常常受到较大的系统偏差影响。这种偏差的一个主要来源是细胞周期,它会引入细胞类型内部的巨大异质性,从而可能掩盖细胞类型之间表达的差异。当前去除细胞周期效应的方法无法有效识别这种效应,并且存在去除其他感兴趣的生物学成分的高风险,这会影响下游分析。我们提出了ccRemover,这是一种能够可靠识别并去除细胞周期效应的新方法。ccRemover保留了数据中其他感兴趣的生物学信号,因此可以作为许多scRNA-Seq数据分析的重要预处理步骤。使用模拟数据和三个真实的scRNA-Seq数据集证明了ccRemover的有效性,在这些数据集中,它提高了现有聚类算法区分细胞类型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/284f/5037372/6d95c7b8a767/srep33892-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验