Tsukamoto Seiichi, Fujii Teruyuki, Oyama Kotaro, Shintani Seine A, Shimozawa Togo, Kobirumaki-Shimozawa Fuyu, Ishiwata Shin'ichi, Fukuda Norio
Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
J Gen Physiol. 2016 Oct;148(4):341-55. doi: 10.1085/jgp.201611604.
In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)-based Ca(2+) sensor yellow Cameleon-Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin-YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin-YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via β-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that β-adrenergic stimulation with 50 nM isoproterenol accelerated Ca(2+) dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.
在心肌中,收缩由肌膜去极化触发,导致细胞内Ca(2+)瞬变、Ca(2+)与肌钙蛋白结合以及随后的横桥形成(兴奋-收缩[EC]偶联)。在此,我们开发了一种新型实验系统,用于同时对大鼠新生心肌细胞内的Ca(2+)动力学和单个肌节长度(SL)进行纳米成像。我们通过表达一种基于荧光共振能量转移(FRET)的Ca(2+)传感器黄色变色龙纳米(YC-纳米)来实现这一点,该传感器与α-辅肌动蛋白融合,以便定位于Z盘。我们发现,在四种不同的YC-纳米中,α-辅肌动蛋白-YC-纳米140最适合用于EC偶联的高精度分析,并且α-辅肌动蛋白-YC-纳米140能够在低温和高温下、自发搏动期间以及电刺激时对细胞内钙瞬变和肌节动力学进行定量分析。我们使用这个工具来表明钙瞬变沿着肌原纤维的长度是同步的。然而,由于单个SL变化的时间不同,无论是否存在正性肌力作用(通过β-肾上腺素能刺激或增强的肌动球蛋白相互作用),肌原纤维上SL的平均值都会导致位移幅度的显著低估(约50%)。最后,我们发现用50 nM异丙肾上腺素进行β-肾上腺素能刺激可加速Ca(2+)动力学,同时肌节延长速度增加约两倍。我们得出结论,我们的实验系统在揭示单个肌节水平上心肌细胞EC偶联的分子机制方面具有广泛的潜在应用。