Los Alamos National Laboratory, Statistical Sciences Group, Los Alamos, NM, USA.
Department of Statistical Science, Duke University, Durham, NC, USA.
Nat Commun. 2021 May 20;12(1):2991. doi: 10.1038/s41467-021-23234-5.
Influenza forecasting in the United States (US) is complex and challenging due to spatial and temporal variability, nested geographic scales of interest, and heterogeneous surveillance participation. Here we present Dante, a multiscale influenza forecasting model that learns rather than prescribes spatial, temporal, and surveillance data structure and generates coherent forecasts across state, regional, and national scales. We retrospectively compare Dante's short-term and seasonal forecasts for previous flu seasons to the Dynamic Bayesian Model (DBM), a leading competitor. Dante outperformed DBM for nearly all spatial units, flu seasons, geographic scales, and forecasting targets. Dante's sharper and more accurate forecasts also suggest greater public health utility. Dante placed 1st in the Centers for Disease Control and Prevention's prospective 2018/19 FluSight challenge in both the national and regional competition and the state competition. The methodology underpinning Dante can be used in other seasonal disease forecasting contexts having nested geographic scales of interest.
美国(US)的流感预测复杂且具有挑战性,这是由于空间和时间的可变性、嵌套的地理关注尺度以及异质的监测参与度。在这里,我们介绍 Dante,这是一个多尺度的流感预测模型,它通过学习而不是规定空间、时间和监测数据结构,并在州、地区和国家各级生成连贯的预测。我们回顾性地将 Dante 的短期和季节性预测与领先竞争对手动态贝叶斯模型(DBM)进行了比较。对于几乎所有的空间单元、流感季节、地理尺度和预测目标,Dante 的表现都优于 DBM。Dante 的预测更准确,更精准,这表明其具有更大的公共卫生实用价值。在疾病预防控制中心的前瞻性 2018/19 年 FluSight 挑战中,Dante 在全国和地区竞赛以及州竞赛中均排名第一。Dante 所基于的方法可用于具有嵌套地理关注尺度的其他季节性疾病预测情况。