Suppr超能文献

脱细胞羊骨软骨异体移植体内的细胞浸润与重塑

In Vivo Cellular Infiltration and Remodeling in a Decellularized Ovine Osteochondral Allograft.

作者信息

Novak Tyler, Fites Gilliland Kateri, Xu Xin, Worke Logan, Ciesielski Aaron, Breur Gert, Neu Corey P

机构信息

1 Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana.

2 Department of Mechanical Engineering, University of Colorado Boulder , Boulder, Colorado.

出版信息

Tissue Eng Part A. 2016 Nov;22(21-22):1274-1285. doi: 10.1089/ten.TEA.2016.0149. Epub 2016 Oct 24.

Abstract

Interest in decellularized tissues has steadily gained as potential solutions for degenerative diseases and traumatic events, replacing sites of missing tissue, and providing the relevant biochemistry and microstructure for tissue ingrowth and regeneration. Osteoarthritis, a progressive and debilitating disease, is often initiated with the formation of a focal defect in the otherwise smooth surface of articular cartilage. Decellularized cartilage tissue, which maintains the structural complexity of the native extracellular matrix, has the potential to provide a clinically relevant solution to focal defects or large tissue damage, possibly even circumventing or complementing current techniques such as microfracture and mosaicplasty. However, it is currently unclear whether implantation of decellularized cartilage in vivo may provide a mechanically and biochemically relevant platform to promote cell remodeling and repair. We examined whole decellularized osteochondral allografts implanted in the ovine trochlear groove to investigate cellular remodeling and repair tissue quality compared to empty defects and contralateral controls (healthy cartilage). At 3 months postsurgery, cells were observed in both the decellularized tissue and empty defects, although both at significantly lower levels than healthy cartilage. Qualitative and quantitative histological analysis demonstrated maintenance of cartilage features of the decellularized implant similar to healthy cartilage groups. Noninvasive analysis by quantitative magnetic resonance imaging showed no difference in T and T* between all groups. Investigation of the mechanical properties of repair tissue showed significantly lower elasticity in decellularized implants and empty defects compared to healthy cartilage, but similar tribological quantities. Overall, this study suggests that decellularized cartilage implants are subject to cellular remodeling in an in vivo environment and may provide a potential tissue engineering solution to cartilage defect interventions.

摘要

对脱细胞组织的兴趣稳步增长,它有望成为治疗退行性疾病和创伤事件的潜在解决方案,替代缺失组织的部位,并为组织向内生长和再生提供相关的生物化学和微观结构。骨关节炎是一种渐进性且使人衰弱的疾病,通常始于关节软骨原本光滑表面出现局灶性缺损。脱细胞软骨组织保留了天然细胞外基质的结构复杂性,有可能为局灶性缺损或大面积组织损伤提供临床相关的解决方案,甚至可能规避或补充当前的技术,如微骨折术和镶嵌成形术。然而,目前尚不清楚在体内植入脱细胞软骨是否能提供一个在机械和生物化学方面相关的平台来促进细胞重塑和修复。我们检查了植入绵羊滑车沟的全脱细胞异体骨软骨移植体,以研究与空缺损和对侧对照(健康软骨)相比的细胞重塑和修复组织质量。术后3个月,在脱细胞组织和空缺损中均观察到细胞,尽管两者的细胞水平均明显低于健康软骨。定性和定量组织学分析表明,脱细胞植入物的软骨特征与健康软骨组相似。通过定量磁共振成像进行的非侵入性分析显示,所有组之间的T和T*无差异。对修复组织力学性能的研究表明,与健康软骨相比,脱细胞植入物和空缺损中的弹性明显较低,但摩擦学参数相似。总体而言,这项研究表明,脱细胞软骨植入物在体内环境中会发生细胞重塑,并可能为软骨缺损干预提供一种潜在的组织工程解决方案。

相似文献

1
In Vivo Cellular Infiltration and Remodeling in a Decellularized Ovine Osteochondral Allograft.
Tissue Eng Part A. 2016 Nov;22(21-22):1274-1285. doi: 10.1089/ten.TEA.2016.0149. Epub 2016 Oct 24.
2
Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.
Acta Biomater. 2015 Sep;23:82-90. doi: 10.1016/j.actbio.2015.05.031. Epub 2015 May 31.
4
Extracellular Matrix Scaffold Using Decellularized Cartilage for Hyaline Cartilage Regeneration.
Adv Exp Med Biol. 2021;1345:209-223. doi: 10.1007/978-3-030-82735-9_17.
6
Decellularized cartilage as a prospective scaffold for cartilage repair.
Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:588-595. doi: 10.1016/j.msec.2019.04.002. Epub 2019 Apr 3.
7
Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model.
Biomaterials. 2006 Aug;27(22):4120-31. doi: 10.1016/j.biomaterials.2006.03.005. Epub 2006 Mar 29.
8
Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells.
J Mech Behav Biomed Mater. 2015 Mar;55:21-31. doi: 10.1016/j.jmbbm.2015.10.002. Epub 2015 Oct 22.
9
Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique.
Acta Biomater. 2017 Aug;58:113-121. doi: 10.1016/j.actbio.2017.05.010. Epub 2017 May 22.
10
Development and characterization of decellularized human nasoseptal cartilage matrix for use in tissue engineering.
Laryngoscope. 2016 Oct;126(10):2226-31. doi: 10.1002/lary.25884. Epub 2016 May 27.

引用本文的文献

2
Cell Therapy Approaches for Articular Cartilage Regeneration.
Organogenesis. 2023 Dec 31;19(1):2278235. doi: 10.1080/15476278.2023.2278235. Epub 2023 Nov 14.
3
Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential.
Biophys J. 2023 Apr 18;122(8):1428-1444. doi: 10.1016/j.bpj.2023.03.004. Epub 2023 Mar 4.
4
Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering.
Stem Cells Int. 2021 Dec 6;2021:5590479. doi: 10.1155/2021/5590479. eCollection 2021.
5
Recellularization and Integration of Dense Extracellular Matrix by Percolation of Tissue Microparticles.
Adv Funct Mater. 2021 Aug 26;31(35). doi: 10.1002/adfm.202103355. Epub 2021 Jun 23.
6
Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models.
Adv Healthc Mater. 2021 Oct;10(20):e2100878. doi: 10.1002/adhm.202100878. Epub 2021 Aug 18.
7
Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing.
Pharmaceutics. 2021 Jun 29;13(7):983. doi: 10.3390/pharmaceutics13070983.
8
Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering.
Front Bioeng Biotechnol. 2021 Mar 25;9:603444. doi: 10.3389/fbioe.2021.603444. eCollection 2021.
9
3D printing of tissue engineering scaffolds: a focus on vascular regeneration.
Biodes Manuf. 2021;4(2):344-378. doi: 10.1007/s42242-020-00109-0. Epub 2021 Jan 4.
10
Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs.
Biomaterials. 2018 Sep;177:161-175. doi: 10.1016/j.biomaterials.2018.04.049. Epub 2018 May 30.

本文引用的文献

1
Dissociated and Reconstituted Cartilage Microparticles in Densified Collagen Induce Local hMSC Differentiation.
Adv Funct Mater. 2016 Aug 9;26(30):5427-5436. doi: 10.1002/adfm.201601877. Epub 2016 Jul 1.
2
Mechanisms and Microenvironment Investigation of Cellularized High Density Gradient Collagen Matrices via Densification.
Adv Funct Mater. 2016 Apr 25;26(16):2617-2628. doi: 10.1002/adfm.201503971. Epub 2016 Feb 19.
3
Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering.
Tissue Eng Part C Methods. 2015 Sep;21(9):971-86. doi: 10.1089/ten.TEC.2015.0036. Epub 2015 Jun 10.
4
Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction.
Biomed Mater. 2015 Jan 13;10(1):015010. doi: 10.1088/1748-6041/10/1/015010.
5
Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment.
Acta Biomater. 2015 Jan;11:274-82. doi: 10.1016/j.actbio.2014.09.031. Epub 2014 Oct 1.
6
High resolution T1ρ mapping of in vivo human knee cartilage at 7T.
PLoS One. 2014 May 15;9(5):e97486. doi: 10.1371/journal.pone.0097486. eCollection 2014.
7
T2* mapping for articular cartilage assessment: principles, current applications, and future prospects.
Skeletal Radiol. 2014 Oct;43(10):1429-45. doi: 10.1007/s00256-014-1852-3. Epub 2014 Mar 19.
8
Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival.
J Cell Biol. 2014 Mar 3;204(5):669-82. doi: 10.1083/jcb.201308029. Epub 2014 Feb 24.
9
Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering.
Biotechnol Adv. 2014 Mar-Apr;32(2):462-84. doi: 10.1016/j.biotechadv.2013.12.012. Epub 2014 Jan 10.
10
Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis.
PLoS One. 2013 Oct 18;8(10):e76658. doi: 10.1371/journal.pone.0076658. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验