Rodríguez Luis Alfredo, Bran Cristina, Reyes David, Berganza Eider, Vázquez Manuel, Gatel Christophe, Snoeck Etienne, Asenjo Agustina
CEMES-CNRS 29 , rue Jeanne Marvig, B.P. 94347, F-31055 Toulouse Cedex, France.
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) , Cantoblanco, Madrid 28049 Spain.
ACS Nano. 2016 Oct 25;10(10):9669-9678. doi: 10.1021/acsnano.6b05496. Epub 2016 Oct 6.
The comprehension of the magnetic configuration in FeCoCu nanowires with a diameter-modulated cylindrical geometry will allow controlling the domain wall motion in this low-dimensional system under the application of magnetic fields and/or the injection of current pulses. Here we perform a quantitative magnetic characterization of isolated diameter-modulated FeCoCu nanowires by combining nanoscale magnetic characterization techniques such as electron holography, magnetic force microscopy, and micromagnetic simulations. Local reconstructions of the magnetic distribution show the diameter-modulated geometry of the wires induces the formation of vortex-like structures and magnetic charges in the regions where the diameter is varied. Vortex-like structures modify the axial alignment of the magnetization in large-diameter segments. Moreover, the magnetic charges control the demagnetizing field distribution, promoting a flux-closure stray field configuration around large-diameter segments and keeping the demagnetizing field parallel to the NW's magnetization around small diameter segments. The detailed description of the remanent state in diameter-modulated cylindrical FeCoCu nanowires allows us to provide a clear explanation of the origin of bright and dark contrast observed in magnetic force microscopy images, which have the same feature of magnetic domain walls. This work establishes the primary knowledge required for future magnetization reversal studies with the aim of searching efficient modulated geometries that allow an optimum and controlled domain wall propagation.
理解具有直径调制圆柱几何形状的FeCoCu纳米线中的磁结构,将有助于在施加磁场和/或注入电流脉冲的情况下,控制这个低维系统中的畴壁运动。在这里,我们通过结合纳米级磁表征技术,如电子全息术、磁力显微镜和微磁模拟,对孤立的直径调制FeCoCu纳米线进行了定量磁表征。磁分布的局部重建表明,导线的直径调制几何形状在直径变化的区域诱导了涡旋状结构和磁荷的形成。涡旋状结构改变了大直径段中磁化强度的轴向排列。此外,磁荷控制着退磁场分布,促进了大直径段周围的磁通闭合杂散场配置,并使小直径段周围的退磁场与纳米线的磁化强度平行。对直径调制圆柱FeCoCu纳米线剩余状态的详细描述,使我们能够清楚地解释在磁力显微镜图像中观察到的明暗对比度的起源,这些图像具有与磁畴壁相同的特征。这项工作建立了未来磁化反转研究所需的基础知识,旨在寻找能够实现最佳和可控畴壁传播的有效调制几何形状。